SIMS Working Group: future plans

Conveners: **Jean-François Paquet** & Gojko Vujanovic

SIMS WG members:

Chun Shen (BNL), Steffen Bass, Weiyao Ke (Duke), Lipei Du, Derek Everett, Ulrich Heinz (OSU), Abhijit Majumder (Wayne State)

JETSCAPE Collaboration Meeting
Berkeley
June 29, 2018

Simulations and Distributed Computing (SIMS) Working Group

Our responsibility:

Carry out simulations over high performance computing facilities

Current focus:

Soft/hydrodynamic sector, the most **numerically expensive** part of the simulations (at the moment)

Soft physics simulation

(Modified from Xin-Nian Wang, QM2018)

Partons interact with the quark-gluon plasma

More realistic description of soft physics

(quark-gluon plasma)
leads to
more realistic calculation of
parton energy loss

[See e.g. Renk, Ruppert, Nonaka and Bass, PRC75:031902 (2007)]

Calibration & production of spacetime evolution

Two step process:

- Calibrate model parameters to soft hadron data to find best set of model parameters
- 2) Use best set of model parameters to produce simulation of quark-gluon plasma spacetime evolution with which parton energy loss is then calculated

Simulation of soft physics in JETSCAPE framework

JETSCAPE Framework will soon* have all the ingredients of a state-of-the-art hydrodynamic simulation of heavy ion collisions

^{*} SMASH is currently being incorporated, c.f. COMP Working Group presentation

Simulation of soft physics in JETSCAPE framework

Bayesian analysis in collaboration with STAT WG

SIMS/STAT collaboration: goals of first Bayesian analysis of soft sector

- Use JETSCAPE as self-contained simulation package for heavy ion collisions:
 quark-gluon plasma simulation generated within framework
- Take advantage of the combined soft sector simulation in JETSCAPE and Bayesian analysis software and expertise to perform analysis on soft hadron observables
- Prepare for future analysis where simultaneous soft/hard physics analysis is necessary (e.g. jet back-reaction into medium)

SIMS/STAT collaboration: short term objectives (1-3 months)

- Complete development and validation of soft physics sector of framework with COMP-WG
- Benchmark JETSCAPE framework and apply for computer resources to perform the Bayesian analysis

Application on XSEDE computing resources nearing completion

Performance of hydrodynamics (MUSIC) on parallel system

Bayesian analysis of soft sector & computer resources

A complete **Bayesian analysis** on the soft sector would have ~20 parameters:

- Trento 2D (initial condition model) has 5 parameters. Trento 3D has 4 additional parameters.
- Flexible parametrization of the temperature dependence of shear and bulk viscosity requires 6 or more parameters
- 2 or 3 parameters for free-streaming & particlization
- One or two additional parameters per center of mass energy

To determine which **set of parameter best describe measurements**, we must **sample** a wide range of values of the **model parameters**.

10 to 40 samples per parameter should be used (Latin hypercube): 20 parameters × 10-40 samples = 200-800 parameter samples.

(Modified from Jonah Bernhard)

Bayesian analysis of soft sector & computer resources

- A full 3+1D simulation of the soft sector requires between 30 and 70 core-hours (depending on the collision energy):
 - The 3+1D hydrodynamic simulation is the most resource intensive
- To compare with measurements, 1,000 to 5,000 full 3+1D hydrodynamic simulation of the soft sector per parameter sample are required
 - Using a small number of hydrodynamic events (< 500) would require a pre-selection of initial condition events in centrality, and would results in non-negligible statistical uncertainty on certain observables

Computer resource requirements per center-of-mass energy:

 $30-70 \text{ core-hours} \times 1,000-5,000 \times 200-800 = 6,000,000 \text{ to } 280,000,000 \text{ core-hours}$

A limited Bayesian analysis will be performed if computer resource allocated are insufficient for a full analysis

May need to investigate using GPU-accelerated hydrodynamics for larger-scale analysis

Computer resource allocation request on XSEDE

- Considerable CPU needs: 6,000,000 to 280,000,000 core-hours
- Significant requirement in terms of memory (RAM): 25-100 GB for 3+1D soft sector simulations
 - Parallelization may be essential

Time being requested on **Texas Advanced Computing Center (TACC)** flagship supercomputer: **STAMPEDE2**

Allocation request to XSEDE includes time needed for **Bayesian analysis of hard sector** as well (c.f. PHYS & STAT WG presentations)

Open Science Grid
since no need for large memory (RAM)
or parallel capabilities

20,000,000 core-hours requested

SIMS/STAT collaboration: one year objectives

XSEDE (computing resource) allocation would begin Separate Bayesian analysis of hard sector **Code development** Perform 3+1D Produce 3+1D **Generation of training data** & validation in **Bayesian** quark-gluon for emulator for 3+1D collaboration with **analysis** of soft **plasma** for Bayesian analysis of soft STAT/PHYS/COMP collaboration sector sector Summer 2018 Fall 2018 Winter 2019 Summer 2019 **Limited Bayesian analysis** of soft sector with 2+1D hydrodynamics for final validation

Summary

- Simulations and Distributed Computing (SIMS) Working Group focused on soft sector for the coming year
- Close collaboration with COMP Working Group to finalize soft sector part of the framework
- Close collaboration with STAT Working Group to perform Bayesian analysis of 3+1D simulation of soft sector of heavy ion collisions
- Important short term goal: **apply for computing resources** for the analysis

Back-up

SIMS/STAT collaboration: constraining the 3D quark-gluon plasma

Bayesian analysis

<u>Systems:</u> Pb-Pb 2760 GeV & 5020 GeV, Au-Au 200 GeV Focus on p_{τ} -integrated observables like in previous Bayesian analysis

Additional parameters in 3+1D:

Four initial condition (Trento) parameters for rapidity direction

Trento 3D

Computing resources & benchmarking JETSCAPE

Benchmarking of all components of JETSCAPE framework to support applications for resource allocations on supercomputers

Benchmark of hydrodynamics (MUSIC) for parallel systems

The road ahead: statistical analysis of soft hadrons with JETSCAPE

Previous **hydro medium not** produced with JETSCAPE code package and **best fit parameters** for hydro **not** obtained within JETSCAPE

Why do this with JETSCAPE?

- Necessary when jet back-reaction into medium is included
- To have a self-contained simulation package for heavy ion collisions

Challenges of doing this with JETSCAPE?

- No afterburner (yet)
- Possible overhead of studying soft physics with a hard-soft physics package (since no jet back-reaction at the moment)

Possible roadmap for coming months/years: qualitative resource overview [can't quantify yet]

- Produce hydro medium with JETSCAPE using current (Duke's) hydro parameters and validate (FS Duke vs FS OSU; VISH 2+1D vs MUSIC 2+1D) [Some human-hours]
- 2. Test & validate code to **calculate soft hadron observables** w/ JETSCAPE [More human-hours]
- 3. **Write code and wrappers** to better integrate calculation of soft hadron observables in JETSCAPE & match to Bayesian statistical analysis package [Lots of human-hours]
- 4. Perform a partial **Bayesian analysis** of soft observables using JETSCAPE with **2+1D hybrid simulation** (Trento+FS+hydro+SMASH)

 [Some human-hours & some amount of CPU-hours]
- 5. Perform a full Bayesian analysis of soft observables using JETSCAPE with **3+1D** hydrodynamics (Trento+FS+hydro+SMASH)

[Lots of human-hours & lots of CPU-hours]

Bayesian analysis using JETSCAPE w/ 2+1D hydrodynamics

Why repeat Bayesian analysis using JETSCAPE in 2+1D hydrodynamics?

- To test that all scripts/code/wrappers are working
- Better estimates of required CPU-time and disk space usage for 3+1D
- Debugging/testing in 3+1D is very slow
- Possible different physics choices (e.g. δf)

Note: doesn't need to be full Bayesian analysis, can be a fast, limited one

Note: MUSIC and VISHNU

- Code essentially identical in terms of physics
- VISHNU is a 2+1D hydro code while MUSIC is a 3+1D hydro code (with 2+1D hydro mode): MUSIC is slower than VISHNU

Bayesian analysis using JETSCAPE w/ 3+1D hydrodynamics

Going to 3+1D implies

- More CPU-time [order 100], and more physical time [order 10, thanks to parallelization]
- More disk space usage [order 100]
- Slower and more complicated testing cycles [because longer run-time, tests may not be possible on local machines, ...]
- More parameters in the hydrodynamic model

Computer resources for 3+1D

Need to estimate CPU-time, RAM usage and disk space requirement to apply for appropriate computer resources for a large scale run

Timeframe

Tentative Timeframe

- Jun-Jul: complete testing & validation code for soft hadrons obs w/ JETSCAPE (no SMASH needed @ this time)
- June: Writing application for XSEDE allocation, i.e. need to have a CPU time estimate, RAM estimate, Disk space estimate (incl. SMASH).
- Jul-Sep: Close collaboration between COMP/PHYS and SIMS is needed to write all code/wrappers for Bayesian analysis incl. SMASH.
- Sep-Oct: Close collaboration between COMP/STAT and SIMS is needed to integrate JETSCAPE with Bayesian analysis software.
- Best if entire pipeline ready by mid October: XSEDE allocation would begin on Oct 1 (see for detail https://portal.xsede.org/allocations/research#xracquarterly)

Timeframe vs available manpower

SIMS needs more jet quenching input