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Introduction

Brief introduction

[ Transverse momentum dependent = TMD ]

TMD factorization describes pp-spectrum of the "double-inclusive processes" at small-pp,
where the transverse momentum is dominantly generated by the orbital motion of partons.
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Introdu

Example: pT-spectum of Z-boson
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Different ranges of pT-spectrum
are dominated
by different physics
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Example: pT-spectum of Z-boson
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Introd

Example: pT-spectum of Z-boson

— 1

Non-Pertubative
(small)
transverse momentum

TMD factorization

Overlap region

S \5-7TeV, [ Lat-47f'
4

10°
pr[GeV]

Pertubative
(large)
transverse momentum

Collinear factorization

Monte-Carlo
event generators

qr ~ 0.2Q [Scimemi, AV;1706.01473]

Transverse momentum dependent factorization

and
collinear factorization
independent and complimentary
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Motivation

Current status

Experimental data

unpolarized

o Large amount of Drell-Yan data: from 5GeV to 120 GeV
e Some data is extremely precise (ATLAS Z-boson measurements)
o Large amount of SIDIS data (low energy only)

o etTe -annihilation data (not well investigated yet)

Theory

o TMD factorization is proved
o Factorization of collinear part [Collins,Becher,Neubert,Scimemi,...; 2010-2012]
o Factorization of rapidity divergences [AV;1707.07606]

Perturbative parts are known up high orders

e Hard part: 3-loops
o Evolution: 3-loops
e Matching: 2-loop (1-loop polarized)

-
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Motivation

Current status

TMD phenomenology

o Many separate fits of subsets of data.

(practically) All studies are done at LO (often without evolution).
o There is the first global fit of DY+SIDIS [Bacchetta, et al; 1703.10157].

There is a single example of higher perturbative order fit (NLO, NNLO) [Scimemi,AV;
1706.01473].

o There is only as single attempt to estimate theory uncertainty band [Scimemi,AV;
1706.01473].
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The first NNLO fit and extraction of (unpol.) TMDPDF
[Scimemi, AV;1706.01473|

o The largest number of data point (DY)
o The largest energy separation
o Consideration of various orders (NLO,NNLL,NNLO)

o Studies of theory error-bands

Included data (at gr < 0.2Q)

reaction Vs Q comment points
E288 p+Cu— v* — pp 19.4 GeV 4-9 GeV norm=0.8 35
E288 p+ Cu— " = pp 23.8 GeV 4-9 GeV norm=0.8 45
E288 p+Cu— " = pp 27.4 GeV 4-9 & 11-14 GeV norm=0.8 66
CDF+DO0 p+p— Z — ee 1.8 TeV 66-116 GeV 44
CDF+DO0 p+pP— Z — ee 1.96 TeV 66-116 GeV 43
ATLAS pP+p—Z = pp 7 & 8 TeV 66-116 GeV tiny errors! 18
CMS p+p—Z — pp 7 & 8 TeV 60-120 GeV 14
LHCb ptp— Z > pp 7 & 8 & 13 TeV 60-120 GeV 30
ATLAS | p+p— Z/v — pp 8 TeV 46-66 GeV 5
ATLAS p+p— Z/y — up 8 TeV 116-150 GeV 9
[ 1 [[ Total 309
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X/points=1.21

X?/points=1.01

5-6 GeV

Drell-Yan at @Q = 5 — 6GeV

Drell-Yan at Q = 116 — 150GeV

o'doldaq;{Gev-]

ATLAS 8TeV
46-66 GeV
model 2 NNLO
X*Ipoints=0.21
N=1.08

ATLAS 8TeV/
116-150 GeV
model 2 NNLO
X/points=0.30

theory/data

°

1l

o The main difficulty was to make all ingredients work together.

qr(GeV]

/ladimir

5

TMD evolution

Evolution is a key
element

Here:
o 3-loop evolution

o 2-loop coefficient
function

o 2-loop matching
plots from [1706.01473]
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Motivation

Next goal is to join SIDIS and DY, and to make a global fit.

Questions of internal consistency are ultimately important.
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Next goal is to join SIDIS and DY, and to make a global fit.

Questions of internal consistency are ultimately important.

TMD evolution is the central element of the factorization. Precise knowledge and
understanding of it is required to make a consistent description of modern data
(2GeV <+ 150GeV).

o There are problems in it

o Generally, the "traditional" formulation is overcomplicated
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Outline

Outline

o TMD evolution in a nutshell

e Equations, solutions, etc.
o TMD evolution field and its structure

o Effects of truncation perturbation theory

e Violation of integrability condition, and solution-dependence of TMD evolution
o Methods to fix the ambiguity.

e (-prescription

o Physical meaning of {-prescription
e Optimal TMD distribution.

o TMD cross-section and perturbative uncertainties.

Evolution of transverse momentum dependent (TMD)
distributions

TMD evolution
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TMD evolution

TMD evolution is used for two practical purposes

e Compare different experiments
o Modeling TMD distribution

do .
ix N/deEZ(qu)Hff’(QaN)Ffﬁh(xlvb;NaCI)Ff’eh(l'%b;HwCQ)
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TMD evolution

TMD evolution is used for two practical purposes

e Compare different experiments
o Modeling TMD distribution

do .
<~ / d?b eI Hyp 1 (Q, 1) Fy (1,65 11, 1) Fyr iy (w2, b5 1, Go)
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TMD evolution

TMD evolution is used for two practical purposes

e Compare different experiments
o Modeling TMD distribution

do .
<~ / d?b eI Hyp 1 (Q, 1) Fy (1,65 11, 1) Fyr iy (w2, b5 1, Go)

Typical model for TMD includes matching
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TMD evolution

TMD evolution is used for two practical purposes
e Compare different experiments

o Modeling TMD distribution

do .
<~ / d?b eI Hyp 1 (Q, 1) Fy (1,65 11, 1) Fyr iy (w2, b5 1, Go)

F(x, b5, Cr) = RIb, (g, Cr) — (i, G F (2,05 i, Gi)

F(z,b;p,¢) ~ C(z,b; 1, ¢) ® PDF(x, 1)

Typical model for TMD includes matching

TMD evolution
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TMD evolution: theory

TMD evolution: theory

f
d e (1)
u2d7‘uzFf<—h(z7b;.u7 C) = FTFth(x»bv Hy C)’ (1)
d
CeFrent@bim) = =D (ub)Fyen(e,bipn0), (2)
o v — TMD anomalous dimension
e D — rapidity anomalous dimension (= —%[Collins’ book|, = K[Bacchetta, at

al,1703.10157])

o Anomalous dimensions are universal, i.e. independent on hadron, polarization,
PDF /FF(see proof [AV;1707.07606]).

o Anomalous dimension depend only on flavor (gluon/quark). Skip index f in the

following.
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TMD evolution: theory

TMD evolution: theory

d ! (s,

NQCTuQFﬂ—h(va;PfaO = WF(;L C)Fﬂ—h(x»b?th)a (1)
d

CqeFrent@bin) = =D (1, b) F (w0, b5 11, C), (2)

Expression for R is known as "Sudakov exponent"

N "y N ,
x exp | In YA R (by: pa) + f e [ro(g(u'): =10 XAy ou ))]].
12 o M n
(13.70)

This is probably the best formula for calculating and fitting TMD fragmentation functions;
W'R

t Regensburg
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TMD evolution: theory

TMD evolution: theory

d ! (s,
NQdiluzFf&h(zﬂb;ﬂ" C) = w}?feh(xa b; s C)u (1)
d
CCTCFﬂ—h(a’a b, ) = DI (u,0)Fyp(z,b;p,0), (2)

@ There are theoretical traps in TMD evolution.
o They became evident at high-perturbative orders.

o Each problem is small, but there are many of them.
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TMD evolution: theory

Problem 1: Violation of transitivity

R[b; X = Y] Rb;Y — X] =1

C2Q — po by |Collins” book|

C:Q
cerp| - [ % [ D2 yutan - 20a(1/3.500) |}

x exv[%(ym — ¥pu) K (me, m, o, 8(#0))] .

(10.131)
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TMD evolutio

Problem 1: Violation of transitivity

0.8

06

0.4

Rb; X - Y] Rb;Y — X] =1

LO
Mz- 50 GeV - M

F'/F

LO

Mz 50 GeV - My

08

06

04

NNLO
Mz— 50 GeV - Mz

L L L \h[GeV]\
0 2 3 4 5 6
F'/F NNLO
Mz 50 GeV - My
L L L \h[GeV L
0 2 3 4 5 6

There is a violation of transitivity ~ 2 % which seems better at NNLO
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Problem 1: Violation of transitivity
Rb; X - Y] Rb;Y - X]=1
11 F'/F
10 LO LO

Mz 5GeV -» My ' Mz—5GeV - Mz
09

08
0.7
0.6
05
04 b[GeV]:

5 6
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10 NNLO NNLO
My 5GeV - My ' Mz 5 GeV — M;
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Problem 2: Anomalous behavior of variations bands

Drell-Yan
06 Ac e NLL/LO
= NNLL/NLO
04 = N°LI/NNLO
o02f
y
-02f
04l
x=0.05

-6l

0.6

0.4

SIDIS
Ao NLLLO
[ NNLL/NLO
N’LLNNLO

o The variations of constants does not decrease at large-Q.

o Opposite it start to increase at large-Q.
o NNLO band seems larger then NLO

TMD evolution

Ly
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Problem 3: Anomalous behavior of variations

CDF run2 CDF run2

CDF run2

CDF run2

CDF run2
NNLL/NNLO
max uncertanty

NNLL/NNLO
¢4 variation

NNLL/NNLO
¢3 variation

NNLL/NNLO
¢ variation

NNLL/NNLO
ci variation

o' dor/dqr(Gev )

In [Scimemi,AV; 1706.01473] there was a study of a perturbative stability. With the help of
variation of scales.
@ The variations of constants ¢; and c3 are the largest despite these are 3-loop series
(compare to c2 and ¢4 which are 2-loop)
o The variation of ¢; and c3 are numerically unstable (see artifacts)
Q=
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TMD evolution: theory

Problem 4: Strong dependence on p
o It seems that TMD fits are seriously dependent on the values of v (up, p*, etc)
o Often the parameter p is used as a subject of fit. E.g. bmax parameter.

e Is it evidence of perturbative instability? Difficult to answer, since there is no dedicated
study on it.
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TMD evolution: theory

Problem 4: Strong dependence on p
o It seems that TMD fits are seriously dependent on the values of v (up, p*, etc)
o Often the parameter p is used as a subject of fit. E.g. bmax parameter.

e Is it evidence of perturbative instability? Difficult to answer, since there is no dedicated
study on it.

In fact, these are consequences of a larger problem:

not self-consistency of TMD evolution in the "naive" form
within perturbation theory.

Under "naive" I refer to, say formulas given in [Collins textbook],
[Aybat,Rogers,1101.5057|,|Echevarria,et al,1208.1281],...
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TMD evolution: theory

Let us examine the TMD evolution equation again

d L (n,
d 2Ff<_h($ b; 3 My C) w}?f%h(va;ﬂvc)v
CiFth(xJL 1y C) = _Df()u7 b)Fth("E7b1,L"7C)7

d¢

The solution of TMD evolution equation (i.e. R)
exists (in the mathematical sense) only if

dyr(p,¢) _ o d
Cdch* I dﬂzp(ﬂyb)

integrability condition

Integrability condition is satisfied due to
the collinear overlap of divergences

¢ d v 0)
d¢ 2

d
N2 7217(/% b) = Tcusp (1)

du eR

= —Teusp (1)
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TMD evolution: theory

The solution of TMD evolution equation (i.e. R)
exists (in the strict mathematical sense) only if

dyr(p,Q) o d
Cdch* I dﬂzp(ﬂyb)

integrability condition

Solution is

Rlts(ng.6) = Gus ol = exp [ [ (3002 =D t)F)]

A.Vladimirov
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TMD evolution: theory

The solution of TMD evolution equation (i.e. R)
exists (in the strict mathematical sense) only if

d vr (1 Q) 2 d
— 22 = —u*—D(u,b
¢ & 2 W (1, b)
integrability condition

Solution is
d¢

Rlts(ng.6) = Gus ol = exp [ [ (3002 =D t)F)]

¢ (ks Cr)

(5 Ci)

+

€=
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TMD evolution: theory

Examples
¢ Solution 1
(1s,C5)
ny q ¢
1HR:/ b (. Cf) = D(s, b) In (l)
Wi 13 Cz
(113, Ci) [Collins’ textbook]|,[Aybat,Rogers,1101.5057],...
'u) 99% popular
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TMD evolution: theory

Examples
N
¢ Solution 1
(g, Cr)
ki dp ¢
lnR:/ —F (1, Cr) — (m,b)ln( f)
i M ¢
(113, Ci) [Collins’ textbook]|,[Aybat,Rogers,1101.5057],...
N 99% popular
’ v
N .
¢ (Nf, Cf) Solution 2
dp ¢
lnR=/ —r(u, Gi) — (uf,b)ln( f)
wi B Gi
(wis G) R
L4 v
@
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TMD evolution: theory

Examples
¢ G Cr) Solution 1
KfsGf
i od
1nR:/ oy p (1, ¢p) — D (m,b)ln(gf)
i M ¢
(113, Ci) [Collins’ textbook]|,[Aybat,Rogers,1101.5057],...
> 99% popular
T¢ (ks Cr) Solution 2
d
1nR=/ B (1, Gi) — (Hﬁb)ln(Cf)
wi M Gi
(wis G) "
AC (ﬂf, ¢ Solution 3
M4
InR = / vy ), ¢(t) —————
PO T "
~D(u(t), b) 1 )dt
(15 i) u (Cr *Ci)tJrCi)
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TMD evolution: theory

TMD evolution is essentially 2D task.
Let me introduce convenient notation.

Evolution scales

¢

2
u:(ln( 2)711'1( 5
1 GeV 1 GeV

2d vector

)

Anomalous dimensions

7F (V)

E(v,b) = (T7 —D(v,b)).

vector field

TMD evolution
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TMD evolution: theory

TMD evolution is essentially 2D task.
Let me introduce convenient notation.

Evolution scales Anomalous dimensions
2
Iz ¢ vr (V)
= (1 1 . E(,b) = ,—D(v,b)).
v (n(1Gev2)’n(1Gev2)) @8 =(=, (®,5))
2d vector vector field
Aln¢
1 1:r)

Evolution equation
VF(z,b;v) = E(v,b)F(z,b;v)

Solution
InRb,vy —v;] = / E.dv
P

(Hids
!

Universitit Regensburg
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TMD evolution: theory

Scalar potential

The integrability condition is the condition that
evolution field E is irrotational (conservative)

VXE=0

Thus, it is determined by a scalar potential

E(v,b) = VU(v,b)
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TMD evolution: theory

Scalar potential

The integrability condition is the condition that
evolution field E is irrotational (conservative)

VXE=0

Thus, it is determined by a scalar potential

E(v,b) = VU (v,b)
Evolution is the difference between potentials

1nR[b;l/f — l/i} = U(l/f,b) — U(Vi,b).

Scalar potential can be easily found

Uv,b) = /Vl Mds — D(v, b)va + const(b),

A.Vladimirov TMD evolution May 15, 2018 19 / 43



TMD evolution in the perturbation theory

In the real live we can operate only with the first several terms of perturbation theory.

Therefore, the integrability condition is violated

Universitit Regensburg
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Iz # T(p)
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TMD evolution in the perturbation theory

In the real live we can operate only with the first several terms of perturbation theory.
Therefore, the integrability condition is violated

dD
) ()
Simple example at 1-loop
D= as(p) Ly
dD d das(u)) o
— = — (p—L ——— | —L
S () (uu )+(u m 5 L

= as (M)Frﬁoas ()ToLy # as(u)To

At N’th order of perturbation theory I' — dD ~ aN+1LV
o Since as ~ In"! u there is always (at any finite N) value of b(fixed) then 6T > 1

o The value of u does not play a role
o In fact, this term is ALWAYS NLO, in the standard resummation counting (asL ~ 1).

o The NP models for D only enforce the problem.
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Truncated PT

In PT the TMD evolution dependents on the path ]

Transitivity

R[b; (p1,C1) — (p2,¢2)] = R[b; (11,C1) — (3, C3)IR[b; (13, C3) — (p2,¢2)] J

Experiment 1

In the fitting procedure
Y different experiments (different Q)
define the same point (same b)

But (generally) different Q’s
Experiment 2 are unrelated

Extraction point

0 2

. @
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Inversion
R[b; {p1, 1} — {p2, G} = R [b{p2, G2} = {p1, 1Y) J

(u1,¢1)

Solution 1
R[b; {p1, G} 2 {p2, G2} = R71[bs {2, G2} 2 {1, 1Y)
# R[b; {2, G2} = {u1, 1 Y]

Solution 2

(p2,¢2) (Solution 1)~1

Reverse ingeneering for each fit!

m

N
?
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E
e

Helmeholz dec

Helmeholz decomposition

E=E+0©
conservative (irrotational) component
divergence-free component

E-©=0
curlE = curl® = %‘

curlE =0
V-©=0

TMD evolution
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Helmeholz decomposition

Helmeholz decomposition

} E=E+0© }

E  conservative (irrotational) component curlE =0

() divergence-free component V-©=0
E-©@=0

curlE = curl® = %F

Ambiguous scalar potential

The divergence-free component is an artifact of truncated PT. It prevents the definition of
scalar potential

VU = E, curlV = ©

V2 = dvr

= vSs. VU =E
dlnp

Poisson equation solution is defined up to V2f = 0.

€=
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Helmeholz decomposition

Non-conservative evolution

(p1,¢1)

1
%E-du:/ d?v curl® = 7/ d%v 8T (v, b)
c Q 2 Ja

(p2,¢2) "

A 4
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Helmeholz c

Non-conservative evolution

(p1,¢1)

Solution 1

%E-du:/ d?v curl® = l/ d%v 8T (v, b)
c Q 2 Ja

lution 1 Hrfod,
Solution1 (if) / U )
n M

solution 2 Ci

i

(Solution 1)~1

- The "longer" evolution — the bigger error
(p2,¢2) Solution 2 w That is why for Z—boson
error is larger

A 4
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Helmeholz decomposition

How to fix it?

There is no unique way to fix this ambiguity, in the absence of extra
all-order/non-perturbative statement on TMD anomalous dimensions.

Some possibilities

o Lets use a single evolution line ;2 = ¢, and the solution 3
+ Restore self-consistency and inversion
- - Everyone stick to a single line. No freedom for modeling.
- Numerically more expensive

o Lets set ® =0, and use only E
+ + Ideal solution which does not restrict anything
- The procedure is not unique, we need to set boundary conditions

o Lets repair the integrability condition by adding terms beyond PT

+ + Very simple
- The procedure is not unique
o Equivalent to some boundary condition (do not know which)

TMD evolution

R
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g the evolution

In PT the integrability condition is violated
We can repair it by accounting "higher-then-allowed" terms of perturbation theory

dD(u, b d ,
" (1 )7'é ¢ (1, 6)
du d¢
d d
¢—=vr (1, ¢) = —T(n), =D, b)#T ()
d¢ du
@
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Repairing the evolution

Improved D scenario "CSS-like"
pPwb) - de Q)
du d¢
d d
C—r(n,¢) = —T(p), p——D(p,b) = I ()
d¢ du
Hdp @
D) = [ 20 + Do, 1) [CS,1981]
1o

In BRI (g, ) — (ir )i o] = Lﬂf%(F(u)ln(ﬁ)—vv(u))

_/;: i:r(u) In (i> — D(uo, b) In (%f) .

® Lo is some new scale where "perturbation theory works".

o In fact it is the composition of solution 1 and 2
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Repairing the evolution

Improved D scenario "CSS-like"

dD(y1,b)

hL—— =

dp

d
Cdfgw(uy QO =-T(w),

B D(p,b) = ()
m

e Transitivity and inversion hold
If po is kept explicit (not po = p; as typically
used)

o If different po are used, the problem of
comparison returns

o If different non-perturbative models are used,
the problem also returns

@ The evolution (quite strongly) depends on g

(c1 variation band)
@
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Repairing the evolution

Improved ~ scenario
Use integrability condition as the definition

dD(p,b) _CdWF(mC)
e = ac
(1:0) = 121 (1€, ) = —u-= DG ) (1) = ()
YFE (K, RAVAVIZES) = /u‘du My C Yv I Kw
I Rlbs (. C) = (0060l = = [ @D v ()
Hi

2

DGy D) (21 ) ~ Dby n (’“‘—2) .
Cr Gi

o Explicitly transitive, and inverse.
e Simple non-perturbative generalization (D — Dyp)

o No extra scales. The evolution field is explicitly conservative.
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The difference between solutions is ~ aN'HLH or ~ a]\”"lL#LLV0

N—_——
main b large b
biGev-'), POR biGeV ] LR biGeV.'\]
0 15 20 25 30 . 1.0 15 20 25 3.0 10 15 20 25 3.0
improved D improved D
o8 LO ——improved D NLO —improvedy NNLO improved y
—improved y fixed i fixed

fixed y

@
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How strong is modification of the field?

F&ffﬁ\ =7
i ===
\\i\“

e 1

= f&\ x\\\\\\\ T
‘»x/&\\}\\\\\ \\\\i\é S
' \\§ \\ )

YA IR, 2N

‘7%
=



ription

Part 2:
(-prescription

@
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¢-prescription

The final scales (pf,(y) are fixed by process kinematics ~ (Q, Q?).
The initial scale are fixed only by model of TMD distribution.

Small-b matching

At small-b one can match TMD to collinear distribution by OPE

o It is often used as an zero-level input to the model of TMD.
o It guaranties agreement with high energy experiments.

o It also requires the evolution from (Q, Q?) — (u,¢;), which are typically selected as

1
H?:Ci’“bj

@
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¢-prescription

F(z,b ; p,C)
—~— ——

params. scales

TMD case
; 1
do ~ /dzbe”bH(Q){R(Q = )PP bbb (e, bbb
This is the standard approach that is used in majority of applications.

Fi(z1,b;b~1,b72) — phenomenological parametrization
p g p

Analogy in DIS
do ~ C(Q,2)® R(Q = 1/2) ® f(x,1/x)

f(z,1/x) — phenomenological parametrization

v
Universitit Regensburg
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¢-prescription

TMD case
. 1
do ~ /dzbe”bH(Q){R(Q = )PP bib T b Py, bbb
This is the standard approach that is used in majority of applications.

Fy(z1,b;b71,672) — phenomenological parametrization

Analogy in DIS
do ~ C(Q,2) ® R(Q = 1/2) ® f(w,1/2)

f(z,1/x) — phenomenological parametrization

It is non-sense!

w'n
Universitit Regensburg
A.Vladimirov TMD evolution May 15, 2018 31 / 43




¢-prescription

TMD case
. 1
do ~ /d2be’qu(Q){R(Q = )PP bbb ) (e, bib ™ b7)
This is the standard approach that is used in majority of applications.

Fi(z1,b; b1, b72) — phenomenological parametrization

v
Analogy in DIS
] alfa) \ 5] / e 1 £/ 1 \
el @y eR{#r@ e afletss)
do ~ C(Q,2) ® R(m; Q— 1GeV> ® f(z,1GeV)
f(z,1GeV) — phenomenological parametrization
v
W'
Universitit Regensburg
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¢-prescription

SRR
AT
10+ A 4 e scaling is defined by
S ey
""/,////[ Iv] *\ ¥\ * x & \'\ ‘\ *\ a difference between potentials
“; 4/‘/)/'f'l A ] *\ \ & X‘ v V\
3 w///,j«“\\\\\\,\\i
Cl&y///#% LT
AT
AN IATIT
% et R e1% g

1 10 102

12 [GeV?] QR
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¢-prescription

The scaling is defined by
a—differenee-between—seales

a difference between potentials

o~
>
5 Evolution factor to both points
o 10 is the same
although the scales are
different by 102GeV?2
1 [
1 10 102
oo e
R
TMD evolution May 15, 2018 32 / 43
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¢-prescription

[ TMD distributions on the same equipotential line are equivalent. ]

NASOL L e DG, )
_,/'///'/,///N U L e TMD(2,b,2)
10%f ,/‘/////N T L L 4—— TMD(a,b,3)
AT U
T /’///l[l\\*\xx\\\ )
L 1) /#zi Y ﬁ\ B! v\ 1 We can enumerate them by a lines
3 1/ LA 2y \ 5 not by (i1, ¢)
S UL O | ™ -
/| \, T\ \ A \ \ \ \~ \¥ \ This the main idea of ¢-prescription
/, ! \\ a9t gt =g F(z,b; 1, ) — F(z,b;line)
L\ ‘\\\\i\‘\\\\x
<\\‘\\ \\ \\\\\ \\'\ 8%
L \ ! \ \ \ \
! A \.\\\\ 9t \\‘ \\\\
i 1‘0 162
2 2
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¢-prescription

[ TMD distributions on the same equipotential line are equivalent. ]

{1GeV?]

L TMD(z,b,1)

(_
\&—— TMD(z,b,2)
(_

L TMD(z,b,3)

We can enumerate them by a lines
not by (i, ¢)

This the main idea of {-prescription
F(z,b;1,() — F(z,b;line)

Intresting to know:
""¢-prescription" is an idiotic term.
Refered to the initial "naive" version

WS
WX T T
100 X T
AT
\ S AT
-///2/ f i& &\ \\ \\ g \ \\ \\ ¥

10 .~/ \
S 1ge v psy
" \ \ i\ ) \i\ 4
A\ AT AT
et et ety
i \‘F}\\\\\.\\ ! \\\ \. \ \‘\ ‘\. \\ \\ ‘

i 1‘0 162

1 [GeV?]

A.Vladimirov

TMD evolution

[Scimemi, AV, 1706.01473].
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In (-prescription we set

¢ = CGuv)

e TMDs are "enumerated" by v (the number of line)

e TMDs are "naive" scale-independent

d
ud—F(az, by, Cu) =0 = No double-logs in the matching.
m

@
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Singularities of E

In (-prescription we set

¢ = Cuv)

e TMDs are "enumerated" by v (the number of line)

e TMDs are "naive" scale-independent

d
ud—F(J:, by, Cu) =0 = No double-logs in the matching.
m

TMD distribution depends only on the "number" of equipotential line

F(z,b;p, () = F(z,b;v)

dF(z,b;v)  dU(b; V)F
dv - dv

)

F(x,b;v) = eU(b;V)fU(bWO)F(:E, b; 1)

(z,b;v)
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Aln¢

Integration, |'difficult!

LUy
AR B!
ALy

DAL RR A

ARRRERR S

147) |
\RERA!

Ty 1Y

A |

-~ - - N|
<t >
e . = 941 TAIIIIR KRR R R AR
R HLA L
S >
#
R Y ry [y
—~— ] # FIYis
g i Y y%
-t Y/ YV R
wa i 5
1 /¥ [ 1y
¥

(r:u)
‘BB
\

AR

‘AR

2NN

A\

AR EERERRY

A

Yy

Integration elementary

A}

AARTARRRR 2
\ N LR
AN S s

Ho

TMD evolution

R— (%)*D(w,b)

o Numerically simple (and fast)
e puy = Q thus as is small

o Alternative form of Sudakov
exponent

€=
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b=3.5GeV!

VX
102 z,
) 7
- | XY
I y
S ol
=10

SO/ ] |
RO IR IR R
A Ee '

IR
IBREERERR

/1] r
l" B

10 10*

P [GeV?]

1 [GeV?]

e Some non-interesting singularities at u,{ — oo

o Landau pole at p = A
e Saddle point (blue dot)

1P [GeV?)

D(psaddle, b) =0,

Y (saddle; Csaddle; ©) = 0

v

universitat kegensourg
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Which line is the best?

Z[GeV?]

b=1.5GeV-!

i b=3.5GeV~'
X /,r"r’n [ A

X7
/7

B EERE RN

@ Due to presence of saddle point the set of uquipotential lines is
restricted domains

/"//'vrvvvllvvif|
Ve nERR R R
< AT
3 e e PR e ]

[N VAT LAY
1 ‘\7 11
15 A
KN U LT D)
HRIKOAX AT AT

1 10 1 10 102

12 [GeV?] W [GeV?]

split into subsets with

e Special line: The one which passes though the saddle point (u is unrestricted)

@ Special lines dissect the evolution planes into quadratures of the "same evolution sign".

TMD evolution

Universitit Regensburg

May 15, 2018 35 / 43




1 TMD

Universal scale-independent TMD

There is a unique line which passes though all u’s

The optimal TMD distribution
F(z,b) = F(x,b; 1, Cu)

where (, is the special line.

b=1. SGeV !

10%

{1Gev?]
¢[GeV?]
{1Gev?]

1 10 102 1 10 102 1 10 1
1 [GeV?) 1 (Gev?] 1 [Gev?] R
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TMD cross-section

TMD cross-section

d a2y - - _
é =00 zf: / I Hy p QBT 0 QY Fy o (w1, 0) e (2, ),
with ¢f = p% = Q?
RIbQ = (Qb) PR @) exp{—D{,(Q,0)0 (Q,0)}

e v is given perturbative series, v = % +as...

o F is TMD in the "naive" (-prescription

o There are no approximations (ala high energy expansion of integrals).
o There are only 2 (us,(s) scales and no solution dependence.
o Clear separation of TMD evolution from the TMD distribution.
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V7 1Gev]

102

CSS version
(Q, Q%) — (up, p3)

b=0.1GeV!

b=1.5GeV!

b=3.5GeV~!

KAV vy v v v v v vy

NN LAY

(P R e

H[GeV]

1 10 10?

C
Here pup = b_*o with bmax = 1.2GeV 1

TMD evolution

@
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Optimal version
(@,Q% — (Q,¢q)

b=0.1GeV! b=1.5GeV! b=3.5GeV~!

U

V7 1GeV]

10 102 1 10 102 1
u[GeV]
Despite it looks very different
it does just the same job as the Sudakov exponent
but faster, numerically more accurate and without extra intermidiate scales

@
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Uncertainties of TMD cross-section (1)

CSS-like definition Optimal definition

ATLAS 7TeV CMS TTeV ATLAS 7TeV CMS 7TeV
model 1 NNLL/NNLO model | NNLL/NNLO model 1 NNLO model 1 NNLO

¥ lpoints=2.01 Flpoints=1.36 P lpoints=2.40 X /points=1.37
N=1 =387.2pb

ATLAS §TeV CMS §TeV ATLAS §TeV CMS §TeV
model 1 NNLL/NNLO model | NNLL/NNLO model 1 NNLO model 1 NNLO

X [points=2.69 Flpoints=1.54 Flpoints=2.21 X lpoints=1.57
7 =428 8pb

Update of the NNLO DY fit,
x2-values practically the same (a bit better), parameters within (previous) error-bars
significant reduction of theory uncertainties.
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Uncertainties of TMD cross-section (1)

Z-boson production at CDF run 2

0.10 cl variation ¢2 variation ¢3 variation c4 variation envelope 010
0.05 /\/\(f 0.05
DA

0.00

-0.10 =0.10

0.10 cl variation c2 variation ¢3 variation c4 variation envelope 010
0.05 \’ 0.05
\/_’/—\_,\_,
\U% Q) 000
-0.05 l -0.05
010 -0.10
0 5 10 15 2 25 a0 5 10 15 20 2 a® 5 10 15 20 25 3 5 10 15 20 25 3@ 5 10 15 2 25 30
0.10 cl variation c2 variation ¢3 variation c4 variation envelope 010
005

A cP(\\’ EY CP“" \/M“NS

000
ol DO pY» T e

-0.10

R
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Uncertainties of TMD cross-section (2)

E288 (200) Q = 6 — 7 GeV

04 rpo) e rpo) e 4
cl variation c2 variation ¢3 variation c4 variation envelope
02 02
02 \/_/_//\ -02
04 04
00 05 10 15 00 05 ) 15 00 05 ) 15 00 05 10 15 00 05 10 5
04 O] O O] v 4
cl variation 2 variation 3 variation c4 variation envelope
02 X 02
00 1.ceQ) | e
P;UD ——
02 02
04 04
00 05 10 15 00 05 10 15 00 05 10 15 00 05 10 15 00 05 10 5
04 oMy oy oMy oy
cl variation ¢2 variation ¢3 variation ¢4 variation envelope
02 X X 02
Ane e PWPY A\
RYY PN
02 ///\ 02
04 -04
00 05 ) 15 00 05 10 15 00 05 ) 15 00 05 10 15 00 05 10 5

R
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arTeMiDe v1.3

Text file that contains the definitions and o
puts nesecary to define the TMD scheme to

User pravided code which provides o, PDFs O e

FFs, et

Default version is interfaced to LHAPDF,

N
TMD optimal optimal [ l
evalution, unpolarized unpolarized
TMDPDF TMDFF
R4 h

Combines TMD distributions, and interfaces to
lower modules.

DY¥-like cross- SIDIS-like cross-
sections. sections.

TMD evolution

Variety of evolutions

LO, NLO, NNLO

No restriction for NP models
Fast code

e DY cross-sections

o SIDIS cross-sections (not tuned
yet)
@ Theory uncertainty bands

https://teorica.fis.ucm.es/artemide/

@
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Conclusion

Conclusion

Main message:
TMD evolution is a double scale evolution.
Therefore, it should be considered with care, and then it grants many simplifications.

Message 1:
In truncated PT there is the solution-dependence of evolution

o It could be strong.
o There is no unique way to fix it.

Message 2:
TMD distributions on a same equipotential line are equivalent. Enumerate them with lines!

o Guarantied absence of (large) logarithms in coefficient function
o Universal for all quantum numbers

o Very simple practical formula (no integrations!)

Double-scale evolution is not unique for TMD case. It also appears in jet functions,
kp-resummation, joint resummation, DPDs, etc.
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Backup

R
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Collinear overlap

There are collinearly divergent subgraphs (then gluon is parallel to Wilson line), which result
to overlap of UV and rapidity divergent sectors. It gives interdependance of anomalous
dimension on "opposite" scale

d
Cdfcw(u, QO =-T(w),

udiD(u,b) = I'(p),
s

where T is the (light-like) cusp anomalous dimension.

@
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Collinear overlap

There are collinearly divergent subgraphs (then gluon is parallel to Wilson line), which result
to overlap of UV and rapidity divergent sectors. It gives interdependance of anomalous
dimension on "opposite" scale

o) = T (),

udiD(u,b) = I'(p),
s

where T is the (light-like) cusp anomalous dimension.

Thus the logarithmic part of AD’s could be fixed

2
(exact)  vp(,¢) = (1) In (“—) S

¢

r
(order-by-order) D(u,b) = as(p )F; L,+a ( 0Bo L2 + Fl —L, + d® O)>

standard notation: Lx = 111(C’0_2172X2)7 Co=2e E

4
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Test of solution independence

(Q,Q%) = (o p3)  mp = —— +2GeV

@
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Test of solution independence

C
(Q7 Qz) - (/Lb, l‘«g) Hb = TO + 2GeV

Q — 10G€V (perturbation theory could work not very well)

I S / 10 1S 20 Hgey) 30

-05

NNLO InR N°LO

o Typical range of Fourier integration b € (0,3)GeV~1!

o The difference between In R at b = 1GeV ! (1.74,1.39,1.23)

o The difference between R at b = 1GeV~! (1.09,1.08,1.06)

o Effect is almost negligible but non-zero(!)

o Improvement NLO—NNLO (~ 1.11) is (a bit) bigger then solution dependence

e Improvement NNLO—NNNLO (~ 1.04) is of the same order as solution dependence

o NP model for D could compensate the effect

y
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Test of solution independence

C
(Q7 Qz) - (/Lb, l‘«g) Hb = TO + 2GeV

Q — MZ (perturbation theory should work well)

o Typical range of Fourier integration b € (0,1)GeV—1!

o The difference between In R at b = 0.5GeV~1! (2.6,1.5,1.23)

o The difference between R at b = 0.5GeV~! (1.6,1.35,1.18)

o Effect is very sizable, as >~ 0.009, b in perturbative region.

o Improvement NLO—NNLO (~ 1.22) is of the same order as solution dependence
o Improvement NNLO—NNNLO (~ 1.10) is smaller then solution dependence

o NP model for D could not compensate the effect, it is too large in PT region.

y
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Effects of truncation of PT

Synopsis of the problem
o There is a solution dependence of TMD evolution

o It is almost negligible at smaller @, but large at larger Q.

It is not disappear (or disappear very slowly) with the increase of PT order.

o At 3-loop order it is the largest uncertainty that comes from perturbation theory

@
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Effects of truncation of PT

Synopsis of the problem
o There is a solution dependence of TMD evolution

o It is almost negligible at smaller @, but large at larger Q.

It is not disappear (or disappear very slowly) with the increase of PT order.

o At 3-loop order it is the largest uncertainty that comes from perturbation theory

[ The source of solution dependence is the violation of integrability condition. ]

In (truncated) perturbation theory

d vr(p,¢) d
CE%¢_“2mp(y,b) &  VXE#0 3)

The evolution flow is non-conservative, the scalar potential is undetermined

The TMD evolution equation has not a unique soluti'R
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To measure perturbative uncertainties, we typically vary scales p.

o In exact PT, u-dependence is absent, but at finite PT there is the perturbative
mismatch between the evolution exponent and the fixed order coefficient
function.

e In TMD case there is an additional source of scale-dependence, solution
dependence

A TMD cross-section

do d?b ;.
ax = UOZ/E‘?!U) QT)Hff’(Qalif)
f

)X {RI[b (11g,Cp) = (i, i)y 10 Y2 Fremn (w1, b3 iy G) Fpr o p (w2, bs s, Ci),

HO —> C1HO, Hf —> C2pf, M —> C3Mi, HOPE —> C4{LOPE-
ci €(0.5,2)
Some of these scales measure the solution dependence, some perturbative mism JBome
both. Universitat Rogensburg

/ladimirov TMD evolution May 15, 2018 48 / 43



A TMD cross-section

do a2b .
x = 2 e @)

AR b5 (g, Cp) = (s Gi)s 0] Y2 Fpn(@1, b iy G Fprp (2, bs i, G,

A LR AL

o
v EARIRRRAN
AAARARARREARN LLLL SRR AR R AR R R R R
ARRRARRRRRLRE! I ee1/2,2) 0 4 JCARARRRARRERALRR
AALRRRRRRALE 74 ALERERRRAREARE IUARRRLRLARREALE
IRRRRRRAR AR AN 'v', ALRLRERRRARARTRER ALRLRERRRRARAREN
1 |4
ARELRLRRRERRRN 5 RLLLLLLRERRRN ARRERRRRARERREN

\
RALLRRRREREYY NN BURRRLRRRRARRS AERRLLRRRRARRS
QL0 R AR OO
RN Y = B R TN TS CORRCLTRR TS

LRy, ONaEiianay SRRy,

RSN LSRR —~> ARRITRITERRER

Y NRARRRV RN TSNS OYI LR INNRARARRRE IR ARSI oo

Ho Hy Hi Ho Hy Hi 0 Hy

@ ¢1 measure only solution dependence
@ co measure mismatch between H and R + solution dependence
@ c3 measure mismatch between F' and R + solution dependence

o c4 measure mismatch between C' and f eR
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Cross-section in the improved ~

In the improved ~ there is no solution dependence

do a2b ;0.
ix - ”°;/ e IO

{RIbs (kg Cp) = (pis GOV Fpn (1, b s, G Fpr p(@a, b3 i, Gi),s

where

RIb; (g, Cp) = (iy )] = eXp{ /H 7“(2D p(u,b)+vv(u))

' 2
f iy f
—‘rDNP(,uf,b)ln(Cf) Dlp (i, )1n(cz)}

There are 3 scales and no solution dependence
@
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Cross-section in the (-prescription

do
X =02 / 0 Hyp (@ ) ART (b3 (g C)Y Fron (@1, 0) Fyr (w2, 0)
!
where
I3
RI[b; (ng,¢p)] = exp{ /
Mg

2
% (24 0+ 9% (1)) + Dp (g D)1 (’Zf) }

WARNING: Special line boundary condition should be taken into account in the coefficient
function (details in private)

However, we can exponentiate boundary conditions and get a simple practical formula

@

Univer.

A.Vladimirov
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(-prescription in PT

TMD (=, b; pi, Gi) = C(a, Ly, Lz, pope) ® PDF(z, popr)

Practically, p; and popg are both set to single p.
1-loop example

usually large
—_——f
(1) = 8(7) + asCr| =2 Lyup(e) +25+8(5)( “LuLg + 3L, _42)}
N——
never large
thanks to
charge
conservation
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(-prescription in PT

TMD (=, b; pi, Gi) = C(a, Ly, Lz, pope) ® PDF(z, popr)

Practically, p; and popg are both set to single p.
1-loop example
usually large
—
(1) = 8(7) + asCr| =2 Lyup(e) +25+8(5)( “LuLg + 3L, —Cz)}

N——

never large

thanks to

charge
conservation

We set ¢ — (u:

PT-calculable

2p 3/2
Cu="TeE ¢ /2+as...

It has been used in [Scimemi,AV,1706.01473|

A LAY

Universi
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