Fundamental Symmetries and Neutrinos in Nuclear Physics

1.2

Q_{weak} (ep)

NuTeV

(v-nucleus)

J. F. Wilkerson

0.243-

0.241

0.239

0.237

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

What lies beyond the Standard Model?

- The SM of subatomic matter has been amazingly successful.
- But we know the SM is incomplete
 - Neutrinos have mass
 - Dark Matter
 - Matter vs. Antimatter Asymmetry
 - Dark Energy
 - Origin of mass

Precision Fundamental Symmetry and Neutrino measurements aim to guide us to better understanding of the fundamental particles and interactions and a new standard model.

Fundamental Symmetries and Nuclear Physics

- Neutron Lifetime
 - Determination of Weak coupling constants
 - Important to a number of weak interaction processes
- Parity Violating electron proton scattering
 - Measure Weak charge of the proton
 - Complementary to Atomic and HEP measurements
 - Probes BSM physics models
- Anomalous magnetic moment of the muon
 - Direct comparison to standard model theoretical predictions
- neutron Electric Dipole Moment
 - Sensitive prove of time violation invariance
 - Probes BSM physics models
 - Could offer an explanation of matter antimatter asymmetry

neutron lifetime

- Important parameter in nuclear physics
 - Big Bang nucleosynthesis
 - nuclear fusion
 - reactor antineutrinos detection
- Value depends on weak coupling constants (G_A & G_V)
- Comparison with other measurements, provides unitarity test of quark-mixing matrix

Wietfeldt and Greene, RMP 2011 DOI: 10.1103/RevModPhys.83.1173

neutron lifetime Puzzle

Measurements at 0.1% level but 4 σ difference between techniques

neutron lifetime Puzzle

Measurements at 0.1% level but 4 σ difference between techniques

Tension between determinations of G_V and G_A

Weak Charge of the proton

• Measure parity violation of electrons scattering on protons

Q_{Weak} Experiment at JLab

The Jefferson Lab *Q*_{weak} Collaboration. *Nature* **557**, 207–211 (2018).

Weak Charge of the proton

• Measure parity violation of electrons scattering on protons

Q_{Weak} Experiment at JLab

 $A_{ep} = -226.5 \pm 9.3$ parts per billion

The Jefferson Lab Q_{weak} Collaboration. *Nature* **557**, 207–211 (2018).

Weak Charge of the proton

• Measure parity violation of electrons scattering on protons

Q_{Weak} Experiment at JLab

 0.0719 ± 0.0045

The Jefferson Lab Q_{weak} Collaboration. *Nature* **557**, 207–211 (2018).

MOLLER at JLab

Parity-Violating Fixed Target 11 GeV electron-electron (Møller) scattering

μ Magnetic Moment (g-2)

- Calculation of the anomalous magnetic moment, a_µ, of the muon includes all known SM physics.
- Experimental measurement (BNL E821) differs from the theoretical calculation by 3.7 σ
- Is this a hint of new BSM physics?

FS & v's in Nuclear Physics J.F. Wilkerson **APS/Alan Stonebraker**

Muon g-2 at Fermilab

- Experiment up and running
- Analysis of Run1 data in progress
- Aim for 2019 1st result
- Precision expected to be ~better than BNL

Example fit of subset of data: 1.2 ppm in just 60 hours of data taking in Spring 2018 (10x more in production)

g-2 Prospects

- Improved calculations Muon g-2 Theory Initiative. (2019)
- New experimental results (2019)

neutron Electric Dipole Moment (nEDM)

- If the neutron has an EDM
 - Violates time reversal invariance (and if CPT conserved, then CP)
 - Might offer an explanation of Matter Antimatter asymmetry
- Limit on nEDM has improved by 10⁹ in 60 years since Smith, Purcell, and Ramsey expt.
- Many BSM models predict an observable nEDM

nEDM prospects

In coming decade experiments aim to reach a sensitivity of 10-28 e·cm

- nEDM expt. **running** at the UCN source at the Paul Scherrer Institute
- UCN nEDM expt. at TRIUMF (Const.)
- Cryogenic nEDM expt. at Institute Laue-Langevin (Const.)
- nEDM expt. Forschungsreaktor München II (Const.)
- nEDM experiment at Oak Ridge National Laboratory (figure)
 - past 4 years "Critical Component Demonstration"
 - 2018-2019: transition to "Large Scale Integration" phase
 - 2023 Data taking

BSM nEDM Time Variation

- Search for ultra light axion induced nEDM oscillations
- Sets limits on axion gluon coupling

What we know about neutrinos (brief)

We have discovered that neutrinos have mass and that flavor states (ν_e , ν_μ , ν_τ) are admixtures of mass eigenstates

Our Standard Model (SM) of fundamental interactions is incomplete.

Expt. Observations of v oscillations

FS & v's in Nuclear Physics I.F. Wilkerson

What we know about neutrinos (3-flavor model)

Maki Nakagawa Sakata Pontecorvo 3x3 mixing matrix (analog to CKM)

FS & v's in Nuclear Physics J.F. Wilkerson

v mysteries (what we don't know)

- What is the mass ordering normal or inverted
 - Reactor measurements, Long baseline oscillation measurements
- Is CP violated (δ) ?
 - Long baseline oscillation measurements
- Are there additional neutrino flavors Sterile neutrinos?
 - reactor short baseline, accelerator searches, and intense sources
- What do neutrinos weigh and why are they so light?
 - Cosmology, direct kinematic searches, neutrinoless double beta decay
- Are neutrinos Majorana particles?
 - Neutrinoless double beta decay
- Are there additional non-standard neutrino interactions?
 - Coherent neutrino scattering, searches for rare decays

Searching for CP (δ) violation

Searching for CP (δ) violation

Searching for CP (δ) violation

Future

Hyper Kamiokande

Are there additional neutrino flavors?

- Anomalies have been independently observed in three "classes" of neutrino oscillation experiments.
- Sterile neutrinos, with $\Delta m^2 \sim eV^2$, can offer an explanation for each of these anomalies. (Not consistent with 3 neutrino model.)
- But sterile neutrino models are unable to simultaneously accommodate all of the observed data.
- All the observations require confirmation.

FS & v's in Nuclear Physics J.F. Wilkerson

Oscillation anomalies: $v_{\mu} \rightarrow v_{e}$ appearance

- MiniBooNE experiment sees excess counts for both neutrino and anti-neutrino data. (Approaching 5 σ) Sterile neutrino with $\Delta m^2 \sim eV^2$
- MiniBooNE and LSND together have > 6σ (DOI: 10.1103/PhysRevLett.121.221801) (Karmen did not see an excess, but insufficient sensitivity to rule out LSND observations).
- Some backgrounds have similar spectral shape to signal.
- MicroBooNE will test if excess is photons or electrons

• Mueller et al. and Huber in 2011 pointed out that improvements in the nuclear data for the reactor \overline{v}_e spectra increased the expected number of \overline{v}_e by 5-6%, resulting in a corresponding shortfall in the observed flux. Could be explained by sterile neutrino with $\Delta m^2 \sim eV^2$

• Mueller et al. and Huber in 2011 pointed out that improvements in the nuclear data for the reactor \overline{v}_e spectra increased the expected number of \overline{v}_e by 5-6%, resulting in a corresponding shortfall in the observed flux. Could be explained by sterile neutrino with $\Delta m^2 \sim eV^2$

• Mueller et al. and Huber in 2011 pointed out that improvements in the nuclear data for the reactor \overline{v}_e spectra increased the expected number of \overline{v}_e by 5-6%, resulting in a corresponding shortfall in the observed flux. Could be explained by sterile neutrino with $\Delta m^2 \sim eV^2$

- Anna Hayes and her collaborators pointed out that one must take into account significant nuclear physics uncertainties. For example 30% of the β -decays are forbidden, with large uncertainties in rates.
- When you include NP uncertainties, not really an anomaly.

Daya Bay

- Daya Bay, RENO, and Double Chooz all observe an excess in their spectra around 5 MeV
- Independent of distance L, hence cannot be sterile neutrino
- Conclusion: Uncertainties in understanding reactor flux predictions at the requisite precision.

Precision Short Baseline Experiments

- The reactor anomaly has stimulated a new generation of precision short baseline experiments.
- Starting to exclude "best fit" value from Reactor anomaly.

Collaboration	Distance (m)	Reactor	Detector	Status
DANSS	10.7-12.7	100 MW Power Reactor, Russia	plastic scint. + Gd layers	Operating
NEOS	24	2.8 GW Power Reactor, Korea	Gd loaded LS	Operating
Neutrino-4	6-12	100 MW, HEU, SM-3, Russia	Gd loaded LS	Operating
PROSPECT	7-12	85 MW, HEU, HIFR, ORNL	6Li doped LS	Operating
STEREO	9-11	58 MW, HEU, ILL	Gd loaded LS	Operating

Precision SBL Recent Results

Neutrino-4

PROSPECT result (v2018)

- spectra from 6 baselines/ full spectrum
- Null-oscillation would yield a flat ratio for all baselines
- Direct ratio search for oscillations, reactor model independent

Precision SBL Recent Results

Neutrino-4 arXiv:1809.10561

Techniques to probe v mass

- Oscillation measurements set a lower bound under the assumption that the lightest neutrino mass eigenstate has a mass of zero.
- Three methods to probe mass : Cosmology, Decay kinematics, and neutrinoless double beta decay $(0\nu\beta\beta)$

	v oscillation	Cosmology	Decay kinematics	Ονββ
Observable	$\Delta m_{ij}^2 = m_i^2 - m_j^2$	$M_{v} = \sum_{i} m_{i}$	$m_{\nu\beta}^2 = \sum_i \left U_{ei}^2 \right m_i^2$	$m_{\beta\beta}^2 = \left \sum_i U_{ei}^2 m_i\right ^2$
Present	$\Delta m_{21}^2 = 7.53(18) \times 10^{-5} \text{ eV}^2$ $\Delta m_{32}^2 = 2.44(6) \times 10^{-3} \text{ eV}^2$	$M_v < 0.23 eV$	$m_{\nu\beta} < 2 \text{ eV}$	$m_{\beta\beta} < (0.1-0.4) \text{ eV}$
Next Gen		0.01 – 0.05 eV	0.2 eV	0.01 – 0.05 eV
Model dependences	No mass-scale information	 ΛCDM Only fit to 7 parameters tension with H₀ 	Energy conservation	 Majorana vs δ₁, δ₂ phases L viol. mech. NME, g_A

Table follows D. Parno, APS April 2018

Cosmology Sensitivity to v mass

- Neutrinos with mass influence cosmological and astrophysical observables
- Using cosmological models (ΛCDM) one can extract information on the sum of neutrino masses. Model dependencies.
- Fits to CMB (Planck) only, CMB+LSS, CMB+LSS+Lyman α, independent data from Dark Energy Survey (DES).

Cosmology Sensitivity to v mass

- Neutrinos with mass influence cosmological and astrophysical observables
- Using cosmological models (ACDM) one can extract information on the sum of neutrino masses. Model dependencies.
- Fits to CMB (Planck) only, CMB+LSS, CMB+LSS+Lyman α, independent data from Dark Energy Survey (DES).

PHYSICAL REVIEW D 98, 043526 (2018)

FS & v's in Nuclear Physics J.F. Wilkerson
Direct Kinematics: β-decay (or EC)

Fermi realized that one could measure the shape of the β decay spectrum near the endpoint where the electron carries away the maximum energy to deduce the neutrino mass


```
dN(E) = K|M|^{2}F(Z,R,E) p_{e}E(E_{0}-E) \{(E_{0}-E)^{2}-m_{v_{e}}^{2}c^{4}\}^{1/2} dE
```

Direct Kinematics: β-decay (or EC)

Fermi realized that one could measure the shape of the β decay spectrum near the endpoint where the electron carries away the maximum energy to deduce the neutrino mass

 $dN(E) = K|M|^{2}F(Z,R,E) p_{e}E (E_{0}-E) \{(E_{0}-E)^{2}-m_{v_{e}}^{2}c^{4}\}^{1/2} dE$

KATRIN Neutrino Mass Experiment

- Intense T₂ source (10¹¹ decays/second)
- Spectrum analysis with electromagnetic filter

- Design resolution: 0.93 eV
- Design $m_{\nu\beta}$ sensitivity: 0.2 eV/c² at 90% CL

KATRIN First Tritium Run (May/June 2018)

- Goal: verify functionality of all system components and demonstrate 0.1% global stability
- Method: inject known gas mix from prepared cylinders (80% of nominal ρ d, ~1% DT and ~99% D2 corresponds to <1% of nominal activity \approx 500 MBq
- Study beta spectrum for systematic effects and test analysis strategies

Single run (3h), analysis of single detector pixel

- ROI extended to 400 eV
- Statistics only errors

Project 8 - measure β frequency

Cyclotron Radiation Emission Spectroscopy (CRES)

Cyclotron motion:

$$f_{\gamma}=rac{f_{
m c}}{\gamma}=rac{1}{2\pi}rac{eB}{m_{
m e}+E_{
m kin}/c^2}$$

 $f_{
m c}=27\,992.491\,10(6)\,{
m MHz\,T^{-1}}$

Decay Signal from T₂ source (APS DNP/PSI Hawaii Meeting)

B. Monreal and J. Formaggio, PRD 80:051301, 2009

FS & v's in Nuclear Physics J.F. Wilkerson

Are v's Majorana Particles?

In a number of even-even nuclei, β -decay is energetically forbidden, while double-beta decay, from a nucleus of (A,Z) to (A,Z+2), is energetically allowed.

Half life (years)	~Signal (cnts/ton-year)
1025	500
5x10 ²⁶	10
5x10 ²⁷	1
5x10 ²⁸	0.1
>1029	0.05

Ονββ decay

Requires:

- neutrino to have non-zero mass
 - "wrong-handed" helicity admixture ~ m_i/E_{ν_i}

Any process that allows 0vββ to occur requires Majorana neutrinos with non-zero mass. Schechter and Valle, 1982

- Lepton number violation
 - No experimental evidence that Lepton number must be conserved

(i.e. allowed based on general SM principles, such as electroweak-isospin conservation and renormalizability)

• Potential explanation for observed matter - antimatter asymmetry.

Ονββ decay

Requires:

- neutrino to have non-zero mass
 - "wrong-handed" helicity admixture ~ m_i/E_{ν_i}

Any process that allows 0vββ to occur requires Majorana neutrinos with non-zero mass. Schechter and Valle, 1982

- Lepton number violation
 - No experimental evidence that Lepton number must be conserved

(i.e. allowed based on general SM principles, such as electroweak-isospin conservation and renormalizability)

• Potential explanation for observed matter - antimatter asymmetry.

If $0\nu\beta\beta$ decay is observed \Rightarrow

neutrinos are Majorana particles, lepton number is violated, sheds light on neutrino mass mechanism (does not arise standard Higgs)

$0\nu\beta\beta$ Decay and $<m_{\beta\beta}>$

Assuming LNV mechanism is light Majorana neutrino exchange and SM interactions (W)

$$\left[\mathbf{T}_{1/2}^{0\nu}\right]^{-1} = G_{0\nu} \left| M_{0\nu} \right|^2 \left| \frac{\left\langle m_{\beta\beta} \right\rangle}{m_e} \right|^2 \qquad \qquad m_{\beta\beta} = \left| \sum_i U_{ei}^2 m_i \right| = \left| c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right|$$

FS & v's in Nuclear Physics J.F. Wilkerson

$0\nu\beta\beta$ Decay and $<m_{\beta\beta}>$

Assuming LNV mechanism is light Majorana neutrino exchange and SM interactions (W)

$$\left[\mathbf{T}_{1/2}^{0\nu}\right]^{-1} = G_{0\nu} \left| M_{0\nu} \right|^2 \left| \frac{\left\langle m_{\beta\beta} \right\rangle}{m_e} \right|^2 \qquad \qquad m_{\beta\beta} = \left| \sum_i U_{ei}^2 m_i \right| = \left| c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right|$$

FS & v's in Nuclear Physics J.F. Wilkerson

Ovββ decay Experiments - Efforts Underway

CUORE

Collaboration	Isotope	Technique	mass (0vββ isotope)	Status
CANDLES	Ca-48	305 kg CaF2 crystals - liq. scint	0.3 kg	Construction
CARVEL	Ca-48	⁴⁸ CaWO ₄ crystal scint.	\sim ton	R&D
GERDA I	Ge-76	Ge diodes in LAr	15 kg	Complete
GERDA II	Ge-76	Point contact Ge in LAr	31	Operating
MAJORANA DEMONSTRATOR	Ge-76	Point contact Ge	25 kg	Operating
LEGEND	Ge-76	Point contact with active veto	~ ton	R&D
NEMO3	Mo-100 Se-82	Foils with tracking	6.9 kg 0.9 kg	Complete
SuperNEMO Demonstrator	Se-82	Foils with tracking	7 kg	Construction
SuperNEMO	Se-82	Foils with tracking	100 kg	R&D
LUCIFER (CUPID)	Se-82	ZnSe scint. bolometer	18 kg	R&D
AMoRE	Mo-100	CaMoO ₄ scint. bolometer	1.5 - 200 kg	R&D
LUMINEU (CUPID)	Mo-100	ZnMoO ₄ / Li ₂ MoO ₄ scint. bolometer	1.5 - 5 kg	R&D
COBRA	Cd-114,116	CdZnTe detectors	10 kg	R&D
CUORICINO, CUORE-0	Te-130	TeO ₂ Bolometer	10 kg, 11 kg	Complete
CUORE	Te-130	TeO ₂ Bolometer	206 kg	Operating
CUPID	Te-130	TeO ₂ Bolometer & scint.	~ ton	R&D
SNO+	Te-130	0.3% natTe suspended in Scint	160 kg	Construction
EXO200	Xe-136	Xe liquid TPC	79 kg	Operating
nEXO	Xe-136	Xe liquid TPC	~ ton	R&D
KamLAND-Zen (I, II)	Xe-136	2.7% in liquid scint.	380 kg	Complete
KamLAND2-Zen	Xe-136	2.7% in liquid scint.	750 kg	Upgrade
NEXT-NEW	Xe-136	High pressure Xe TPC	5 kg	Operating
NEXT-100	Xe-136	High pressure Xe TPC	100 kg - ton	R&D
PandaX - III	Xe-136	High pressure Xe TPC	\sim ton	R&D
DCBA	Nd-150	Nd foils & tracking chambers	20 kg	R&D

MAJORANA

SNO+

Ovββ Status : Significant Progress !

Ονββ Current Results

FS & v's in Nuclear Physics J.F. Wilkerson

Searching for 0vßß Decay

Assuming LNV mechanism is light Majorana neutrino exchange and SM interactions (W)

$$\left[\mathbf{T}_{1/2}^{0\nu}\right]^{-1} = G_{0\nu} \left| M_{0\nu} \right|^2 \left| \frac{\left\langle m_{\beta\beta} \right\rangle}{m_e} \right|^2 \qquad \qquad m_{\beta\beta} = \left| \sum_i U_{ei}^2 m_i \right| = \left| c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right|$$

FS & v's in induced raysics J.F. Wilkerson

Next Generation 0vββ Considerations

- Is there a preferred $0\nu\beta\beta$ isotope?
 - *No preferred isotope in terms of per unit mass within current uncertainties on NME and g*_A.
- What evidence is needed to claim the observation of $0\nu\beta\beta$
 - Measurement of a peak (or excess) at the correct energy at 3σ .
 - Observation in two different isotopes.
- What is required to cover Inverted Ordering masses? (T_{1/2} approaching 10²⁸ years)
 - For a nearly ideal, background free experiment ~ 10 t-y.
- What are the critical experimental considerations?
 - Availability of ton quantity of (enriched) isotopes.
 - *Reduction of backgrounds (and/or effective discrimination)*
 - * $2\nu\beta\beta$ rate (irreducible background) ⁷⁶Ge ¹³⁰Te, ¹³⁶Xe are the best (longest $T_{1/2}$), but impact depends on resolution.
 - Resolution.

Ovββ decay Experiments - ton scale

Collaboration	Isotope	Technique	mass (0vββ isotope)	Status
GERDA II	Ge-76	Point contact Ge in LAr	31	Operating
Majorana Demonstrator	Ge-76	Point contact Ge	25 kg	Operating
LEGEND	Ge-76	Point contact with active veto	~ ton	Const. LEGEND-200
CUORE	Te-130	TeO ₂ Bolometer	206 kg	Operating
CUPID	Te-130	TeO ₂ Bolometer & scint.	~ ton	R&D
SNO+	Te-130	0.3% natTe suspended in Scint	160 kg	Constr./Commish
EXO200	Xe-136	Xe liquid TPC	79 kg	Operating
nEXO	Xe-136	Xe liquid TPC	~ ton	R&D
KamLAND-Zen (I, II)	Xe-136	2.7% in liquid scint.	400, 800 kg	Complete,
KamLAND2-Zen	Xe-136	Improved light coll, disc	800 kg	Upgrade
NEXT	Xe-136	High pressure Xe TPC	~ton	Const. NEXT-100
PandaX - III	Xe-136	High pressure Xe TPC	\sim ton	

PandaX-III 42

SNO+ CFNS Inaugural Symposium Nov. 28, 2018

nEXO

LEGEND

Summary: 0vββ-decay Status and Future Prospects

- Significant experimental progress since the 2015 long range plan.
 - Experiments have attained or are approaching sensitivities of $T_{1/2} > 10^{26}$ years, with substantially reduced backgrounds.
 - "Background free" measurements have been achieved as have detectors with masses >200 kg.
 - Theory progress should soon provide NME with realistic uncertainties and will likely reduce uncertainties associated with g_A. This will have a critical impact on understanding sensitivity and discovery potential
- Large international $0\nu\beta\beta$ collaborations are moving forward with designs for next generation experiments based on lessons learned from the current measurements.
 - All aim for sensitivity & discovery levels at $T_{1/2}$ approaching 10^{28} years
- The ability to discover $0\nu\beta\beta$ will require excellent energy resolution, low backgrounds ("background free") and large exposures (t-y) as well as observation by independent experiments, using different isotopes.

Coherent elastic v-nucleus scattering (CEvNS)

 $v + A \rightarrow v + A$

D. Z. Freedman, Coherent effects of a weak neutral current, Phys. Rev. D 9, 1389 (1974).

Coherent elastic v-nucleus scattering (CEvNS)

D. Z. Freedman, Coherent effects of a weak neutral current, Phys. Rev. D 9, 1389 (1974).

Spallation Neutron Source (ORNL) w/ 14.6 kg CsI[Na]

FS & v's in Nuclear Physics J.F. Wilkerson

CEVENS Experiments and Prospects

- A powerful tool to study fundamental physics BSM interactions, v magnetic moment, weak mixing angle, nuclear form factor, neutron radius and skin, ...
- Impacts models for nuclear and particle astrophysics
- Potential applications reactor monitoring, nonproliferation, ...

Collaboration	Detector	Source	Status
COLLEDENT	14.6 kg CsI (Tl)	SNS, ORNL	Observed
COHEKENI	NaI, LAr, Ge	SNS, ORNL	Const.
CONNIE	Si CCD	3.9 GW Power Reactor, Brazil	Operating
COvUS	4 kg Ge	3.9 GW, Power React., Germany	Operating
MINER	Ge, Si bolometers	TRIGA Res. Reactora, Texas A&M	R&D
v-CLEUS	CaWO ₄ and Al ₂ O ₃ calorimeter	Power reactor	R&D
v-GeN	HPGe	Kalinin Power reactor	Operating
Ricochet	Zn, Ge, or CaWO ₄ bolometer	Chooz reactor, France	R&D
RED	large mass LXe	3.2 GW Kalinin Plant or SNS	R&D
TEXONO	~ kg Ge	Kuo-Sheng Reactor Neutrino Laboratory, Taiwan	R&D

FS & v's in Nuclear Physics J.F. Wilkerson

CFNS Inaugural Symposium Nov. 28, 2018

Fundamental Symmetries & Neutrinos Summary

- Fundamental Symmetry measurements with increasing complexity continue to push the sensitivity frontier
 - No significant deviations from the SM.
 - Promising prospects for progress.
- Neutrino oscillations demonstrate that SM is incomplete. But important questions remain.
 - Sterile neutrinos claims require confirmation. Understanding NP is crucial.
 - Major advances for $0\nu\beta\beta$ experiments, ready to go to ton scale
- Potential issues with limitations from NP uncertainties and estimation of systematics.

Fundamental Symmetries & Neutrinos Summary

- Fundamental Symmetry measurements with increasing complexity continue to push the sensitivity frontier
 - No significant deviations from the SM.
 - Promising prospects for progress.
- Neutrino oscillations demonstrate that SM is incomplete. But important questions remain.
 - Sterile neutrinos claims require confirmation. Understanding NP is crucial.
 - Major advances for $0\nu\beta\beta$ experiments, ready to go to ton scale
- Potential issues with limitations from NP uncertainties and estimation of systematics.

Why it matters

- v's influence the evolution of the early universe an the growth of large scale structure in the universe (Cosmology)
 - Need to know the masses and number of neutrino flavors
- Raises the questions of how neutrinos fit into electroweak symmetry breaking (Higgs) and understanding the origin of mass

Dirac — then neutrinos must have extremely weak coupling with Higgs Majorana — additional Higgs particles or another source of mass (See-saw and additional heavy neutrinos)

- Need to know the masses
- Are neutrinos Majorana particles?

Why it matters

Sakharov Conditions

- Baryon # violation
- CP violation
- Out of equilibrium (sphaleron process)
- May offer an explanation of the observed excess of matter to anti-matter (Leptogenesis)
 - Are neutrinos Majorana particles?
 - Is CP is violated in the lepton sector?

• Opens the questions of additional physics beyond the standard model?

- additional neutrino flavors (Sterile neutrinos)?
- non-standard neutrino interactions?

Why it matters

- Modify numerous mechanisms and processes in nuclear and particle astrophysics (Stellar burning, supernovae explosions, elemental abundances, blazers, ...)
 - Need precise knowledge of mixing angles, mass ordering, cross-sections, ...

• Using neutrinos to probe other physics: geoneutrinos, stellar burning, supernovae, neutrino astronomy, ...

Oscillation Measurement Prospects - 3 flavor model

Three areas of emphasis:

- maximality/octant of θ_{23}
- neutrino mass ordering
- leptonic CP violation

Global fits to all available oscillation data finds ~3 σ preference for Normal Ordering Phys.Lett. B782 (2018) 633-640

https://globalfit.astroparticles.es/ 15 ¥ 10 0.4 0.40.020.024 03 0.6 0.016 0.02805 $\sin^2 \theta_{23}$ $\sin^2 \theta_{13}$ $\sin^2 \theta_{12}$ 15 Ĩ¥ 10 22 2.4 2.6 0.5 1.5 0 2 $|\Delta m_{31}^2| [10^{-3} eV^2]$ $\Delta m_{21}^2 [10^{-5} eV^2]$ δ/π

Operating

 T2K, NOvA, SuperK, IceCube DeepCore, ANTARES, Daya Bay, RENO, Double Chooz,

Near-future

• JUNO, RENO-50 ORCA, PINGU

Oscillation anomalies: $v_e \rightarrow v_e$ disappearance

- Radiochemical Solar neutrino gallium experiments, SAGE and GALLEX, used intense sources to check their extraction efficiencies.
- Combine data from GALLEX (2 runs with ${}^{51}Cr$) and SAGE (runs with ${}^{51}Cr$ and ${}^{37}Ar$) give a ratio of detected/predicted of 0.85 ± 0.05.
- If neutrino oscillation, deficit consistent with sterile neutrino with $\Delta m^2 \sim eV^2$
- Concerns with correlated errors and systematic uncertainties.
- Planned SOX experiment with ¹⁴⁴Ce source canceled. (Science 359 (6377), 729 DOI: 10.1126/science.359.6377.729)

Weighing the ν

Inverted Order

FS & v's in Nuclear Physics J.F. Wilkerson

Ovββ decay and Lepton Number Violation

(Classifying sources of LNV: organize discussion by scales)

• LNV dynamics at very high scale ($\Lambda >> \text{TeV}$)

$$\frac{1}{\Lambda} \ \overline{\ell^c} \ell \ H H$$

LNV dynamics at lower scale (Λ~TeV)

$$\frac{1}{\Lambda^5} \, \bar{q} q \, \bar{q} q \, \overline{e^c} e$$

• LNV dynamics at very low energy (e.g. low-scale seesaw)

$$-\frac{1}{2}M_R \overline{\nu_R^c} \nu_R + Y_\nu \,\overline{\ell} \nu_R H$$

Affects $0\nu\beta\beta$ in significant ways, depending on mass scale $M_R:eV\to 100~GeV$

NSAC 2015 Long Range Plan

RECOMMENDATION II

The excess of matter over antimatter in the universe is one of the most compelling mysteries in all of science. The observation of neutrinoless double beta decay in nuclei would immediately demonstrate that neutrinos are their own antiparticles and would have profound implications for our understanding of the matter-antimatter mystery.

We recommend the timely development and deployment of a U.S.-led ton-scale neutrinoless double beta decay experiment.

A ton-scale instrument designed to search for this as-yet unseen nuclear decay will provide the most powerful test of the particle-antiparticle nature of neutrinos ever performed. With recent experimental breakthroughs pioneered by U.S. physicists and the availability of deep underground laboratories, we are poised to make a major discovery.

This recommendation flows out of the targeted investments of the third bullet in Recommendation I. It must be part of a broader program that includes U.S. participation in complementary experimental efforts leveraging international investments together with enhanced theoretical efforts to enable full realization of this opportunity.

$0\nu\beta\beta$ and ν mass

Observable (decay rate) depends on nuclear processes & nature of lepton number violating interactions (η).

- Phase space, G_{0v} is calculable.
- Nuclear matrix elements (NME) via theory.
- Effective neutrino mass, <m_{ββ}>, depends directly on the assumed form of lepton number violating (LNV) interactions.

Discovery Sensitivity Comparison

Discovery probability of next-generation neutrinoless double-beta decay experiments Matteo Agostini, Giovanni Benato, and Jason Detwiler arXiv:1705.02996v1

Red : Achieved Backgrounds; Black : Projected Backgrounds

Width of bands based on range of NME values

Comprehensive CEvNS Program

Backgrounds resolution, discovery

Experiment	Background (counts/FWHM t y)	Width (1 FWHM)
CUORE	108	8 keV
GERDA-II	2.9	2.9 keV
Majorana Dem.	4.0	2.5 keV
EXO-200	111	71 keV
KamLAND-Zen	~3.5(~120 per t(Xe))	272 keV

S. Elliott

Background is per tonne of material, not isotope – an important distinction for KamLAND-Zen.

Requirement for a ton scale experiment is ~ 0.1 or less.

Backgrounds, resolution, discovery

Resolution@2039keV: 2.5 keV, $0\nu\beta\beta$ HL: ~2e25 y

Resolution@2039keV: 2.5 keV, $0\nu\beta\beta$ HL: ~2e25 y

Resolution@2039keV: 2.5 keV, $0\nu\beta\beta$ HL: ~2e25 y

FS & v's in Nuclear Physics J.F. Wilkerson

Resolution@2039keV: 2.5 keV, $0\nu\beta\beta$ HL: ~2e25 y

Resolution@2039keV: 2.5 keV, $0\nu\beta\beta$ HL: ~2e25 y

Resolution@2039keV: 250 keV, $0\nu\beta\beta$ HL: ~2e25 y

Sensitivity to $\langle m_{\beta\beta} \rangle$ per unit mass

Sensitivity per unit mass of isotope

➡ Isotopes have comparable sensitivities in terms of rate per unit mass

66

I.F. Wilkerson

R.G.H. Robertson, MPLA **28** (2013) 1350021 (arXiv 1301.1323)

Inverse correlation observed between phase space and the square of the nuclear matrix element .

> geometric mean of the squared matrix element range limits & the phase-space factor evaluated at g_A=1

Progress with $0\nu\beta\beta$ Theory

Topical Nuclear Theory Collaboration for Double-Beta Decay and Fundamental Symmetries

Goals are calculated nuclear matrix elements that:

- 1. Are more accurate.
- 2. Carry a quantified uncertainty.

Goal 1 involves the development and application of powerful many-body techniques, e.g. the Coupled-Clusters Method, and the In-Medium Similarity Renormalization Group.

Red bar at bottom is coupled cluster calculation (Hagen et al).

(We don't believe the small value is generic).

⁷⁶Ge in progress, ¹³⁶Xe in next couple of years.

FS & v's in N J.F. Wilkerson

Progress with $0\nu\beta\beta$ Theory

Goal 2 requires a first-principles framework of interactions and currents: Chiral Effective Field Theory.

Comes with consistent weak current.

Cirigliano et al. recently found that we need new short-range operator, even when underlying mechanism is light- ν exchange. May increase uncertainty.

Along the way, have explained most of quenching in β decay, are currently exploring effects on $\beta\beta$ decay.

Sensitivity vs. Exposure

3σ Discovery vs. Exposure

FS & v's in Nuclear Physics J.F. Wilkerson

Potential contributions to the background

- Primordial, natural radioactivity in the detector and array components: U, Th, K
- Backgrounds from cosmogenic activation while material is above ground ($\beta\beta$ -isotope or shield specific, ⁶⁰Co, ³H, ³⁹Ar, ⁴²Ar, ...)
- Backgrounds from the surrounding environment: external γ, (α,n), (n,α), Rn plate-out, etc.
- μ-induced backgrounds generated at depth: Cu, Pb(n,n' γ), ββ-decay specific(n,n),(n,γ), direct μ
- 2 neutrino double beta decay (for 1000 kg, impact depends on resolution)
- neutrino backgrounds (for 1000 kg, can be a contribution)

Reducing Backgrounds - Strategies

- Directly reduce intrinsic, extrinsic, & cosmogenic activities
 - Select and use ultra-pure materials
 - Minimize all non "source" materials
 - Clean (low-activity) shielding
 - Fabricate ultra-clean materials (underground fab in some cases)
 - Go deep reduced μ 's & related induced activities
- Utilize background measurement & discrimination techniques

 $0\nu\beta\beta$ is a localized phenomenon, many backgrounds have multiple site interactions or different energy loss interactions

- -Energy resolution
- -Active veto detector
- -Tracking (topology)
- Particle ID, angular, spatial,& time correlations

- Fiducial self-consistent fits
- Single site / multi site fitting
- Granularity [multiple detectors]
- Pulse shape discrimination (PSD)
- Ion Identification

Gerda & Majorana ⁷⁶Ge

MAJORANA DEMONSTRATOR

Vacuum cryostats in a passive graded shield with ultra-clean materials

Module 1 (June 2015 - ongoing) Module 2 (August 2015 - ongoing) 29.7 kg of 88% enriched ⁷⁶Ge crystals 35 PPC detectors + 23 ^{nat}Ge BEGe detectors (14.4 kg) 2.5 keV FWHM @ 2039 keV BG goal: 1 cts/(keV t yr):

Office of Science

Target of 100 kg yr

Direct immersion in active LAr shield

GERDA

Phase I (Nov 2011- May 2013) Phase II (Dec 2015- ongoing): 35.6 kg of 87% enriched ⁷⁶Ge crystals 30 BEGe detectors (20.0 kg) 7 coaxial HdM and IGEX (18 kg) 2.9 keV FWHM @ 2039 keV BG goal: 1 cts / (keV t yr)

Nov. 28, 2018

FS & v's in Nuclear Physics J.F. Wilkerson

GERDA & MAJORANA ⁷⁶Ge

Ionization

Both experiments are presently operating in a "background free" regime and benefiting from excellent energy resolution: Best $Q_{\beta\beta}$ fractional resolution and lowest background in the region of interest with respect to other isotopes

MAJORANA DEMONSTRATOR

GERDA

J.F. Wilkerson

LEGEND ⁷⁶Ge

LEGEND

lonization

Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay

LEGEND mission: "The collaboration aims to develop a phased, ⁷⁶Ge based double-beta decay experimental program with **discovery potential** at a half-life beyond 10²⁸ years, using existing resources as appropriate to expedite physics results."

First Stage:

- (up to) 200 kg ⁷⁶Ge in upgrade of existing infrastructure at LNGS
- •BG goal 0.6 cts/(FWHM t yr)
- •Data start ~2021
- •Will use existing MAJORANA & GERDA detectors
- Proposal submitted to LNGS in March 2018
- •Have funding for 130 of the 200 kg in place.

Subsequent Stages:

- •1000 kg ⁷⁶Ge (staged)
- •Timeline coordinated with First Stage
- •BG goal
 - 0.1 cts/(FWHM t yr)
- Location tbd
- •Required depth (Ge-77m) under investigation

CUORE ¹³⁰Te

- First ton-scale bolometric detector: 988 TeO2 detectors operating at ~ 10 mK temperature
 - □ 742 kg of TeO₂ \rightarrow 206 kg of ¹³⁰Te
- Excellent cryogenic performance
- Energy resolution 7.7 keV with improvements underway
- Background in ROI (0.014±0.002) counts/(kg*keV*year), consistent with design goal of 0.01 counts/(kg*keV*year)
- First results after 2 months of data taking in 2017:

 $\Box T_{1/2}^{0\nu\beta\beta}(130\text{Te}) > 1.5 \times 10^{25} \text{ years (with CUORE-0/Cuoricino)}$

- □ $m_{\beta\beta}$ <110-520 meV [PRL **120**, 132501 (2018)]
- □ 5-year sensitivity: $T_{1/2}$ >9×10²⁵ years; $m_{\beta\beta}$ <140-400 meV

Phonons

CUORE Upgrade with Particle ID (CUPID)

- Next-generation bolometric tonne-scale experiment
- CUORE design, proven CUORE cryogenics
- 988 enriched (90%) crystals, α rejection by detecting light (Cherenkov, scintillation)
 - Goal: nearly zero background measurement: TES on background goal < 0.1 events / (ROI ton*year)</p>
 - Sensitivity to the bottom of IH region

Worldwide R&D, pilot experiments to demonstrate readiness to construct a tonne-scale experiment

CUPID-0/Se at LNGS Zn⁸²Se crystals

FS & v's in Nuclear Physics J.F. Wilkerson CUPID-Mo at Modane Li₂¹⁰⁰MoO₄ crystals

R. Artusa et al., Eur.Phys.J. **C74**, 3096 (2014) White papers: arXiv:1504.03599 & arXiv:1504.03612

Scintillator - Phonons

SNO+ ¹³⁰Te (Phase I) SNO Scintillation

- Phase-I: 3.9 t Te @0.5% loading in liquid scintillator
 → 1300 kg ¹³⁰Te (20% FV); Planned phase-II 3% loading
- $Q_{\beta\beta}=2530.3 \text{ keV}$; $\sigma \sim 82 \text{ keV}$ (4.6%)
- All detector engineering complete: water data taking started May 2017
- Objective is 780 tonnes linear alkyl benzene (+PPO+Te-ButaneDiol)
- LAB purification plant in final commissioning, fill August 2018
- 3.8 tonnes TeA underground cooling; 4 tonnes en route from China
- Te and butane-diol plant in construction, expected loading 2019
- Phase-I: $T_{1/2} > 1.96 \text{ x } 10^{26} \text{ yr} (90\% \text{ CL}); \text{ m}\beta\beta < 36-90 \text{ meV}$

First neutrino candidate: 2017-02-05, upward-going, no outward-looking PMTs triggered

3.8 tonnes Telluric acid UG (half since 01/15); cosmogenic activity decaying

FS & v's in Nuclear Physics J.F. Wilkerson

KamLAND-ZEN ¹³⁶Xe

Scintillation

0 0

- 90% enr ¹³⁶Xe in liquid scint. balloon R=1.5 m
- $Q_{\beta\beta}=2457.8 \text{ keV}; \sigma \sim 114 \text{ keV} (4.6\%)$
- Phase II (PRL **117** 082503 (2016))
 - 380 kg (2.96% by Xe wt.)
 - R=1 m fiducial cut
 - 534.5 days, with 126 kg y exposure
 - 110m Ag contamination reduced by x10 T $_{1/2} > 1.07 \text{ x } 10^{26} \text{ y } (90\% \text{ CL})$

Sensitivity T $_{1/2}$ > 5.6 x 10²⁵ y (90% CL)

A

- Unsuccessful new larger mini balloon deployment - 2016
- Next phase: data taking 750 kg enriched Xe starting summer 2018 (new balloon to be installed April)
- KamLAND2-Zen with 1000kg+ proposed with improved light collection efficiency

EXO-200 ¹³⁶Xe

Scintillation - Ionization

- Enriched Liquid Xe in TPC
 - Q_{ββ}=2457.8 keV
 - 200 kg of 80.6 % enriched¹³⁶Xe
 - 75.6 kg fiducial mass,
 - 177.6 kg years exposure
 - Combine Scintillation-Ionization signal for improved resolution (71 keV FWHM @ Q_{ββ})
 - Phase II improved resolution : 1.23%
 - Single site Multisite discrimination

T $_{1/2} > 1.8 \text{ x } 10^{25} \text{ y } (90\% \text{ CL})$ Sensitivity 3.5 x $10^{25} \text{ y } (90\% \text{ CL})$

FS & v's in Nuclear Physics J.F. Wilkerson

nEXO ¹³⁶Xe

Scintillation - Ionization

- 5 tonnes of ^{enr}Xe
- LXe homogeneous imaging TPC similar to EXO-200:
- nEXO 10 yr 90% CL sensitivity: T_{1/2} > 5.10²⁷ yr
- Improvements and R&D focussed:
 - Light collection (SiPM)
 - Charge collection (tiles)
 - HV stability
 - Background controls sensitivity

FS & v's in Nuclear Physics J.F. Wilkerson

NEXT ¹³⁶Xe

NEXT-NEW data

- High pressure (10-15 bar) ¹³⁶Xe TPC for high E- resolution + tracking capability
- $Q_{\beta\beta}=2457.8 \text{ keV}$; $\sigma \sim 7.3 \text{ keV} (0.3\%)$
- NEXT-NEW
 - 4.5 kg_{iso}, operating at Canfranc
 - Energy resolutions extrapolating to substantially better than 1%

- NEXT-100
 - NEXT-100 in construction now thru 2019.

15cm

- Demonstrate "background free@100kg-scale" technology by 2021

Off double escape peak

15cm

On double escape peak

NEXT-500 [future generation]

CFNS Inaugural Symposium Nov. 28, 2018

NEXT ¹³⁶Xe

Scintillation - Ionization

PHYSICAL REVIEW LETTERS 120, 132504 (2018)

Featured in Physics

Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

Single barium ion sensitivity demonstrated with SMFI

PandaX-III ¹³⁶Xe

lonization

- High pressure gas TPC, phased approach with multiple 200-kg enriched xenon gas TPC for a ton-scale 0vββ experiment [arXiv:1610.08883]
- Prototype being commissioned.
- First 200 kg detector: construction starts summer 2018. Located at CJPL.
- TPC with two charge readout planes on two ends
- 4 m³ inner volume and 10 bar working pressure
- Main design features: Micromegas modules for charge readout. Good energy resolution and background suppression with tracking [arXiv:1802.03489]

