A journey from the LHC to an EIC with a *short stop* at RHIC and HERA

Emergence of Quantum Matter

Big question:

 Detail properties of this emergent QCD matter, .e.g., Chiral symmetry restoration in Quark-Gluon-Plasma?

LHC, where "violent events" happen

LHC, where "violent events" happen High-multiplicity pA collisions

Rare events, ~1 in 10M minimum-bias collisions

LHC, where "violent events" happen High-multiplicity pA collisions

Rare events, ~1 in 10M minimum-bias collisions

Why do such thing?

 Shown some properties of the hot QGP medium, e.g., long-range particle correlation

provides a baseline for (not) finding exotic physics

Chiral Magnetic Effect

Three birds, one stone

- Version of the second strong P and CP violation
- Chiral symmetry restoration
- Initial strong magnetic field

CME: charge separation w.r.t event plane

Chiral Magnetic Effect

This CME observable

pPb collisions:

 No CME is expected, but share similar medium properties of AA collisions

PbPb collisions:

CME and/or other effects

Chiral Magnetic Effect

This CME observable

pPb collisions:

 No CME is expected, but share similar medium properties of AA collisions

PbPb collisions:

CME and/or other effects

Unambiguous prove of presence of background in data!

New insights and baseline for CME searches at RHIC

Confinement

Heavy ion collisions can take us to deconfinement

But, what is the origin of confinement?

Confinement

Heavy ion collisions can take us to deconfinement

But, what is the origin of confinement?

One proposal is to use *entanglement entropy as a probe of confinement* R. Klebanov, D. Kutasov and A. Murugan (2007)

Confinement

Heavy ion collisions can take us to deconfinement

But, what is the origin of confinement?

One proposal is to use *entanglement entropy as a probe of confinement*

R. Klebanov, D. Kutasov and A. Murugan (2007)

Von Neumann entanglement entropy [edit]

The bipartite Von Neumann entanglement entropy S is defined as the Von Neumann entropy of either of its reduced states; the result is independent of which one we pick. That is, for a pure state $\rho_{AB} = |\Psi\rangle\langle\Psi|_{AB}$, it is given by:

 $\mathcal{S}(
ho_A) = -\operatorname{Tr}[
ho_A\log
ho_A] = -\operatorname{Tr}[
ho_B\log
ho_B] = \mathcal{S}(
ho_B)$

where $\rho_A = \text{Tr}_B(\rho_{AB})$ and $\rho_B = \text{Tr}_A(\rho_{AB})$ are the reduced density matrices for each partition.

Entanglement entropy inside of a proton?

("local parton-hadron duality")

Entanglement Entropy at HERA and at an EIC

Measurement:

 Event by event charged-particle multiplicity distribution in DIS at low-x for the target fragmentation region

H1 experiment at HERA

Entanglement Entropy at HERA and at an EIC

Measurement:

 Event by event charged-particle multiplicity distribution in DIS at low-x for the target fragmentation region

Entanglement Entropy at HERA and at an EIC

Measurement:

 Event by event charged-particle multiplicity distribution in DIS at low-x for the target fragmentation region

Limited in acceptance

asymmetric beams at an EIC will be a game changer

Short-range nuclear correlations

- How do nucleons bound together to form a nuclei?
- What is the dynamics of nucleon-nucleon interactions at short distance?

Short-range nuclear correlations

- How do nucleons bound together to form a nuclei?
- What is the dynamics of nucleon-nucleon interactions at short distance?

Nucleons, protons and neutrons, interacts weakly at large distance (> 2fm), and strongly at short distance (~1fm), inside of nuclei

 Two distinct regions: k < k_F and k < k_F corresponds to: Mean-field theory, e.g., Shell model, vs Short-Range Correlations (SRCs)

A puzzle of nuclear physics

• EMC effect vs SRCs

A puzzle of nuclear physics

• EMC effect vs SRCs

Can we study the SRCs in the simplest nuclei?

Probing pn configuration in deuteron at an EIC

• SRCs can be accessed by the high pT component

Probing pn configuration in deuteron at an EIC

- SRCs can be accessed by the high pT component
- Sensitive to deuteron GPD
- Constrains SRCs models

Will be a challenging measurement at an EIC

Opportunities at RHIC via ultra-peripheral collisions

- Current dAu UPCs data:
 - 1. J/psi photoproduction off deuterons
 - Baseline estimates of *pn* configuration in deuteron by tagging a neutron? direct connection to *SRCs*

Opportunities at RHIC via ultra-peripheral collisions

Maybe we can get a taste of the EIC physics before a decade later?

"If I ever get a career in physics, (I hope) it will be in an EIC"

Thank you!