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The modern era of gravitational wave astrophysics started on September 2015:

Consistent with gravitational waves  from the merger of binary black holes at                  dL ' 440MPc

m1(35.4m�) +m2(29.8m�) ! m⇤(62.2m�)

corresponding to radii~90 km and separation 350 km.

SNR = 24



Advanced LIGO
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Michelson interferometers with Fabry-
Perot cavities.
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Compact binary mergers
Most promising GW events at LIGO consist of mergers of binary black holes or 

neutron stars with masses                                                                 .    

There are  three qualitatively different

regimes in the evolution of these systems.


Calculating the gravitational waveform


hµ⌫(r ! 1) = gµ⌫ � ⌘µ⌫ ⌧ 1

in each phase requires different

 theoretical tools…


mNS ⇠ O(1)m� mBH ⇠ O(10)m�



The Inspiral Phase

This is the early part of the signal as the binary enters the LIGO band.    Consists of 
well separated orbits and slow (“adiabatic”) time evolution, with velocities
 v/c ⌧ 1

To a good approx, gravitational dynamics becomes linear, and Einstein’s theory 
reduces to a simple wave equation:
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The binary constituents can be regarded as point particles, with nearly Newtonian 
gravitational dynamics:   
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Radiated power:

valid for arbitrarily strong (e.g black hole) but non-relativistic sources.


hTT
ij =

4GN

R

d2

dt2
ITT
ij

dE

dt
= �GN

5
h
...
I ij

...
I iji



Compact binary in a circular orbit:

Use                                                 and                                     to find:⌦ = v/r ⇠ 2⇡⌫GW v2 ⇠ GNm/r

r(10Hz) ⇠ 300km
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Orbital radius:
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for neutron stars as they sweep the LIGO frequency band  .
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Orbital velocity:

GW strain:
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Time evolution at a semi-quantitative level through energy balance

Dynamics:

corresponding to                       orbital cycles in the LIGO band.

Signal
duration:
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What LIGO has seen so far in the O1 and O2 runs (blue and orange)



Simulated waveforms corresponding to 5+1 detected GW signals in O1+O2:


Not included:   GW170608




GW170817

Companion        ray burst 1.7 s after 
coalescence allowed source localization 
within NGC4993.

��

Strongest signal so far w/ SNR~32.4.    
Corresponds to NS/NS at 

Hubble diagram from GW

“standard siren” H0 = 70.0+12.0

�8.0 kms�1Mpc�1

z ⇠ 0.01



The need for precision in the inspiral phase

During the adiabatic inspiral phase, the binaries are non relativistic.    The 

quantity

v/c ⌧ 1

serves as a small expansion parameter that organizes the gravitational dynamics in this 
regime.    From the quadrupole radiation formula, the GW phase is
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Matched filtering to the LIGO data requires a waveform template that is phase coherent to             

                    orbital cycles.    Including GR corrections to the phase ⇠ O(1)

� =
v�5

32

⇥
O(1) +O(v2) + · · · O(v5)

⇤

suggests that the theoretical prediction should be accurate to at least (v/c)5 ⌧ 1(v/c)5 ⌧ 1



A more careful estimate by  Cutler et al, PRL (1993) show that phase coherence between 
waveform templates and the GW data requires theoretical predictions that are accurate to 

Sensitivity = (v/c)7 “Precision 
gravity”

This means that the inspiral phase carries a wealth of information about the binary system.  

One expects to obtain 

1.   Accurate measurements of masses, spins, and distances 
for compact binaries out to 

2.  Stringent tests of classical GR and constraints on “new 
physics”

3.  Dynamics of BH horizons, neutron star EoS…

With higher order corrections motivated by matching analytical and numerical GR…



Hulse-Taylor pulsar (1974):   a case study

mp = 1.4414(2)m�

mc = 1.3867(2)m�

Ṗexp

ṖGR

= 1.0013± 0.0021

This is a binary NS/NS system with                              and orbital radius                     



Post-Newtonian Theory

The starting point for the velocity expansion of the binary system is Einstein’s equations 
recast as a non-linear wave equation for a spin-2 field propagating in flat space

Blanchet et al. PRL (1995)
Damour et al PLB (2001)
Blanchet et al PRL (2004)

Goldberger and Rothstein PRD (2006)

(�@2
t +r2)hµ⌫(x) = �16⇡GN T̃µ⌫(x)

where the source term on the RHS is the energy-momentum of matter and of gravity itself

(hµ⌫ = gµ⌫ � ⌘µ⌫)

T̃µ⌫ = Tµ⌫ + Tµ⌫
g

⇠ h@2h+ h2@2h+ · · ·
(matter source)

(grav. energy-momentum)

which is conserved,                  ,by Einstein’s equations.   The GW waveform at              is  @µT̃
µ⌫ = 0
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In the post-Newtonian limit, the sources can be treated as a point particles.    All the effects 

of finite size (tidal, etc) can be described model-independently  by an “effective Lagrangian”

Spp = �m

Z
d⌧ + c

Z
d⌧R2

µ⌫↵� + · · ·

T̃µ⌫ = Tµ⌫
pp + Tµ⌫

g

(spins, higher gradients, 
multipoles)

Containing in general an infinite number of terms suppressed by powers of                  .   
The coefficients encode the tidal response to an ext. gravitational field.   E.g 

Goldberger and Rothstein PRD (2006)

rs/� ⌧ 1

c / “Love number”

depends on (non-gravitational) microphysics:

cNS ⇠ mR4

cBH,d=4 = 0 (Damour et al; Poisson et 
al;Kol+Smolkin 2010)

Flanagan and Hinderer, 
2008; depends on NS EoS



In practice computing higher order terms in perturbation theory                      is difficult for 
two reasons: 

(v ⌧ 1)

Many terms in the expansion of                      at high orders in T̃µ⌫(x) hµ⌫

Many physically relevant scales

rg = 2GNM

rs(= rg for BH)

Gravitational radius:   

Physical radius:

Orbital scale:

Radiation wavelength

r

�

rg ⇠ rs � r � �

r ⇠ rg/v
2 � ⇠ r/v ⇠ rg/v

3

all correlated with the perturbative expansion parameter



We (Goldberger+ Rothstein, 2006) found that these challenges can be ameliorated by 
employing some 20th century tools from quantum field theory:

Many terms in the expansion of                      at high orders in T̃µ⌫(x) hµ⌫

Organize the expansion in terms of Feynman diagrams

Many physically relevant scales

Treat each scale separately, by constructing 
a tower of gravity Effective Field Theories

hµ⌫ = hpotential
µ⌫ + hrad

µ⌫



Feynman Diagrams from Graviton Effective Field Theory

Graviton EFT (GREFT)= Low Energy Quantum Gravity

In order to simplify the classical calculations, I will use a field theory of gravitons:                                                       

This is a Lorentz invariant theory of spin 2 particles interacting with matter.    The linear 
coupling to matter is 

(analogous to EM interactions                        ).   This theory makes sense at energies      

Feynman, DeWitt, 
Weinberg (1960’s); 
’t Hooft+Veltman (1970s)

Lint = AµJ
µ

Lint =
hµ⌫

MPl
Tµ⌫

E < MPl = 1/
p

32⇡GN ⇠ 1019GeV

so it is an “effective field theory” with limited predictive power.

(*see chiral perturbation theory=pion EFT, in QCD)



Because the graviton couples to energy-momentum it must couple to itself:

Lint =
hµ⌫

MPl
Tµ⌫

g

g g

Together with gauge invariance, this implies that there are is a tower of 

self-interactions

⇠ 1

MPl
⇠ 1

M2
Pl

⇠ 1

M3
Pl

This is similar to QCD, except that in gravity, the # of self interactions is infinite.



Even though “GREFT” cannot be used to make sense of quantum gravity phenomena at 
energies                        , it does make unambiguous low energy predictions.  E.g.:E ⇠ MPl

DeWitt, 1967.

         corrections to 
Newton potential:
O(~)

Donoghue et al 2002, Khriplovich et al 2002
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This theory also makes predictions that are less academic in nature.   In particular, it has 
applications to the inflation paradigm for early universe cosmology

Tensor modes:
L. Abbott and M. B. Wise (1984)

Scalar and 
tensor “non-
Gaussianites”

J. Maldacena (2001)

These predictions are relevant for estimates of

B-mode polarization effects in the CMB…
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As first shown by Duff (1973) the Feynman diagrams of GREFT also reproduce classical 
solutions in GR: 

hµ⌫ = + ++ + · · ·

(NOT A
PROPAGATOR!)

w/                “two-loop” terms computed first by Goldberger and Rothstein (2006).O(1/r3)

(“deDonder

coordinates”)



Scale Separation:

The Lorentz covariant GREFT is not optimal to the bound state problem.   There are two 
distinct kinematic regions relevant to the non-relativistic limit

Potential

Exchange:

Radiation:

kµ ⇠ (v/r, 1/r)

kµ ⇠ (v/r, v/r)

It becomes convenient to reformulate the GREFT by splitting up the fields into modes with 
non-overlapping support in momentum space: 

hµ⌫ = hpotential
µ⌫ + hrad

µ⌫



The basic idea is that the potentials are short distance modes, and can be 
“integrated out”.   This technique is borrowed from EFTs for heavy mass bound 
states in QED  (                    ) and in QCD (                       ):

Double expansion in                                            and                                          

Q

Q̄
(Manohar and Stewart)

e+e�, µ+µ�

Aµ = Apotential
µ +Arad

µ

We found in gravity a similar splitting is useful, with 
Q, Q̄ ! BH

Aµ ! hµ⌫

(Bodwin et  al (1994);
Luke, Manohar, Rothstein (1997))

QQ̄ = cc̄, bb̄, tt̄

⇤QCD/mQ ⌧ 1 v ⇠ ↵s(mQ) ⌧ 1

“NRQED” “NRQCD”



Tower of gravity EFTs:  

Independent EFTs with distinct expansion parameter coincide in PN limit.
UV divergence in                 corresponds to IR effect in EFTi+1 EFTi

Full theory:
Rµ⌫ = 0

Finite size
S = SEH + Spp

2-body
(“NRGR”)

⌘0 = rs/r(= rg/r,BH)

⌘1 = rg/r(= v2,NR case)

⌘2 = r/�(= v,NR case)

⌘3 = rg/�(= v3, NR case)

Radiation
(multipole+non-
linear GR)

UV

UV

UV IR matching

IR matching

IR matching
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Newton 

(1687)

Next-to-leading (1PN):   Einstein-Infeld 
Hoffman Lagrangian (1938)
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2PN  (1981-2002):     Some of the diagrams are (Gilmore+Ross, PRD 2008)

(simplification of PT via field redefs:  
B. Kol+M. Smolkin, 2007-2008. )

reducible to one-loop integrals via 
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(WG+Ross,2010)Radiation in the two-body sector




In terms of the metric parametrization (2.4), with Ai = 0, each world-line coupling to
the gravitational degrees of freedom �, �ij reads

Spp = −m� d⌧ = −m� dt e��⇤
�

1 − e−cd��⇤ �v2 + �ij
⇤

vivj� , (2.5)

and its Taylor expansion provides the various particle-gravity vertices of the EFT.
Also the pure gravity sector Sbulk = SEH + SGF can be explicitly written in terms

of the KK variables; we report here only those terms which are needed for the present
calculation2:

Sbulk ⊃ � dd+1x√� �1
4
�(�∇�)2 − 2(�∇�ij)
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Figure 1. The diagrams contributing at order G5
N . As in the EFT approach the massive objects

are non-dynamical, the horizontal black lines have to be seen as classical sources, and not as
propagators. Green solid lines stand for � field propagators, blue dashed lines for � fields.

2
It is understood that spatial indices in this expression, including those implicit in terms carrying a(�∇)2, are contracted by means of the spatial metric �ij , which implies the appearance of extra � fields, e.g.(�∇�)2 ≡ �ab�cd�ij�ab,i�cd,j and �ij = (�−1)ij (and on the second line �ij = �ij , � = �ij�ij).
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State of the art:   Potentials at 4PN (Foffa, Sturani, Mastrolia, Sturm, PRD 2017).   All 
diagram topologies

Is there an easier way?

static part of the 2-body potentials:



Color-Kinematics 
“Duality”



A hint that there is a hidden simplicity in gravity comes already from DeWitt’s 1967 result:

+ + +
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Summing the diagrams and squaring the amplitude yields a simple answer

However, the intermediate steps are far from simple….



E.g., the graviton triple self-interaction:

which has 426 terms.

↵� µ⌫



deWitt, PRD 1967:

Developments in theoretical particle physics starting with Witten’s twistor string theory 
(2004) have given insight into the  “ridiculous simplicity” of results not only in perturbative 
gravity, but in gauge theory (eg QCD).    



Bern-Carrasco-Johansen (BCJ) “duality”: (2008)
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To understand, look at gluon scattering in QCD:

The triple gluon interaction has the structure:

a b

c

µ ⌫

�

= fabc

Color
Kinematics

# of gluons

“Gravity is the square of gauge theory”
or,



The gluon scattering amplitude in “BCJ form”
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Here                  are the Mandelstam kinematic invariants (CM energy, scattering angle):

and:

with
(Color “Jacobi id.”)

(Kinematic “Jacobi id.”)



BCJ noticed that by applying the color-to-kinematics “duality” transformations:

cs ! ns ct ! nt cu ! nu

the 4-gluon amplitude maps onto 

AYM
4 ! ÂGR

4 =
nsns

s
+

ntnt

t
+

nunu

u

This precisely matches tree-level graviton scattering in GR!

The BCJ “double copy”:

This is the easier way of doing deWitt’s calculation…



The Classical Double Copy: Goldberger+Ridgway,  PRD 2017

Goldberger+Ridgway, PRD 2018

Goldberger, Prabhu, Thompson, PRD 2017

Goldberger, Li, Prabhu, PRD 2018

Does gravity = (gauge theory)^2 provide a “much easier” way of obtaining classical GR 
solutions?  

We’ll check this by brute force, starting with a system of “classical quarks”, interacting 
self-consistently through gluon exchange:

Here, “classical” means that there is no pair creation                 .

Degrees of Freedom:

(Color charge) (Orbital)
“Wilson line”

 (⌧) =

0

@
r(⌧)
g(⌧)
b(⌧)

1

A



This system evolves according to the classical Yang-Mills equations

D⌫F
⌫µ
a (x) = gJµ

a (x)

which are a “non-Abelian” version of Maxwell’s   (                            ):

Particle dynamics from current,                   , and energy-momentum conservation:

dpµ

d⌧
= gcaFµ

a ⌫v
⌫

(Non-Abelian Lorentz force)

(Local conservation of color charge)



Our interest is in a collection of charges interacting self-consistently and emitting 
radiation out to infinity:

or

(classical Bremsstrahlung) (          binary inspiral)QQ̄

In either case, our focus is on the gluon radiation field measured by detectors at infinity:
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The classical solution has a representation in terms of Feynman diagrams
4
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FIG. 1: Leading order Feynman diagrams for the perturbative expansion of J̃µ
a (k).

where the gauge-dependent current J̃µ
a is defined as

J̃µ
a = Jµ
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⌫(@⌫Aµ

c � Fµ⌫
c ),

@µJ̃µ
a = 0. (10)

Formally, Eq. (9) can be solved iteratively. Once the solution at given order in g is found, it is fed back in to get
the field at the next order in perturbation theory. Equivalently, it is useful to to adopt a diagrammatic approach,
where the classical solution hAµi(x) to Eq. (9) is calculated as a sum of Feynman diagrams of the form shown in
Fig 1. These diagrams are computed using standard momentum space Feynman rules, with insertions of the (Fourier
transformed) current Eq. (3). At the classical level, in order to preserve causality, it is necessary to use a retarded,
or “in-in” i✏ prescription for the gluon propagator5. This is in contrast to the standard Feynman boundary condition
that must be used to compute S-matrix elements between asymptotic in/out states. In this paper, it is implicit that

propagators obey retarded boundary conditions, i.e. 1/k2 = 1/[(k0 + i✏)2 � ~k2].
Once the classical solution hAµi(x) is known to a given order in perturbation theory, it can be used to compute all

the physical observables of this system. Here, we focus on observables measured by asymptotic observers at spatial
infinity, r = |~x| ! 1, which are directly related to the momentum space current J̃µ

a (k) =
R

ddxeik·xJ̃µ
a (x) evaluated

for on-shell momentum k2 = 0. For example in d = 4 spacetime dimensions the asymptotic field at r ! 1 and
retarded time t is
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with kµ = (!,~k) = !(1, ~x/r). Similar results exist also in d dimensions. Thus the on-shell current J̃µ
a (k) directly

measures the flux of energy-momentum, color, and angular momentum radiated out to infinity by the system of point
charges. In particular, the total energy-momentum radiated out to r ! 1 in a fixed polarization channel ✏a

µ(k) is
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where k · ✏a(k) = 0, ✏a(k) · ✏b(k)⇤ = ��ab. Similar expressions hold for other conserved quantities (angular momentum
and color charge).

B. Perturbative solutions

We consider a setup consisting of several particles ↵ = 1, . . . , N coming in from infinity at ⌧ ! �1, with initial
data
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↵(⌧ ! �1) = ca

↵, (13)

xµ
↵(⌧ ! �1) = bµ

↵ + vµ
↵⌧, (14)

5
This can be justified by interpreting hAµi(x) as the tree level part of the in-in one-point correlation function hin|Aa

µ(x)|ini in quantum

field theory coupled to classical particles.
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FIG. 1: Leading order Feynman diagrams for the perturbative expansion of J̃µ
a (k).
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with kµ = (!,~k) = !(1, ~x/r). Similar results exist also in d dimensions. Thus the on-shell current J̃µ
a (k) directly

measures the flux of energy-momentum, color, and angular momentum radiated out to infinity by the system of point
charges. In particular, the total energy-momentum radiated out to r ! 1 in a fixed polarization channel ✏a
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���✏a(k)⇤ · J̃a(k)
���
2
kµ, (12)

where k · ✏a(k) = 0, ✏a(k) · ✏b(k)⇤ = ��ab. Similar expressions hold for other conserved quantities (angular momentum
and color charge).

B. Perturbative solutions

We consider a setup consisting of several particles ↵ = 1, . . . , N coming in from infinity at ⌧ ! �1, with initial
data

ca
↵(⌧ ! �1) = ca

↵, (13)

xµ
↵(⌧ ! �1) = bµ

↵ + vµ
↵⌧, (14)

5
This can be justified by interpreting hAµi(x) as the tree level part of the in-in one-point correlation function hin|Aa

µ(x)|ini in quantum

field theory coupled to classical particles.

J̃µ
a (k) = + + · · ·

and can be expressed as an integral internal gluon momenta and the particle worldlines:
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#

⇥(2⇡)4�(`↵ + `� � k) Integration 
 measure: 

Checks:    (1)                       

(2)   classical brems. (Gyulassy+McLerran, 1997)    

(3)   NR limit:   

kµJ̃
µ
a = 0

Partial 
amplitudes:

Aµ
adj,s = Aµ

adj,s(`↵,� , v↵,� , k)

~Ja(x) = �3(~x)~̇pa(t) ~pa(t) =
X

↵

ca↵~x↵ (Electric color dipole

radiation)



Color-to-kinematics map:
Inspired by BCJ, we make the following formal replacements to the gauge theory result

ifa1a2a3 ! �⌫1⌫2⌫3(q1, q2, q3) = �1

2
[⌘⌫1⌫3(q1 � q3)

⌫2 + ⌘⌫1⌫2(q2 � q1)
⌫3 + ⌘⌫2⌫3(q3 � q2)

⌫1 ] ,

g ! 1

2md/2�1
Pl

ca↵(⌧) ! ipµ↵(⌧)

pµ↵(⌧) ! pµ↵(⌧)



This mapping produces a gravitational source

J̃µ
a (k) ! iT̃µ⌫(k)

T̃µ⌫(k) =
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i

that is a consistent perturbative solution of Einstein’s equations of gravity:

T̃µ⌫(k) = T̃ ⌫µ(k) kµT̃
µ⌫(k) = 0

It yields spin-2 gravitational waveform:

h±(t,~n) =
4GN

r

Z
d!

2⇡
e�i!t✏⇤µ⌫± (k)T̃µ⌫(k),



Who ordered that?

Our mapping between QCD and gravity also implies a spin-0 wave

�(t,~n) =
GN

r

Z
d!

2⇡
e�i!tT̃µ

µ(k)

that is not there in Einstein’s theory of gravity.    Which gravity theory is it?

We (WG+Ridgway, PRD (2017)), showed that the radiation fields correspond to a scalar-
tensor gravity theory known as dilaton gravity

S = Sg + Spp

Sg = �2md�2
Pl

Z
ddx

p
g [R� (d� 2)gµ⌫@µ�@⌫�]

Spp = �m

Z
d⌧e� + · · · ,

This is perhaps not completely unexpected given results by Bern+Grant(1999); 
Scherk+Schwarz (1974) and Kawai et al (1986), as well as the BCJ mapping:

Aµ ⌦A⌫ = ��Bµ⌫ � hµ⌫

between QCD and gravity.
Bµ⌫ = �B⌫µ =

� = dilaton

axion



We verified this fact by explicit calculation in the dilaton-gravity theory:

graviton emission
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FIG. 2: Leading order Feynman diagrams in the perturbative expansion of T̃µ⌫(k).
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To get the result in Fig. 2(d), we have used the background field gauge three-graviton interaction vertex, whose
explicit form can be found, e.g., in [5]. The remaining contribution to T̃µ⌫(k) at this order in the interactions is
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In all these equations, we have dropped terms that vanish when kµ is on-shell, as these do not contribute to the
asymptotic field at r ! 1. However, we have checked that the sum of the diagrams Fig. 2(a)-(e) obeys the Ward
identity kµT̃µ⌫(k) = 0 even for kµ o↵-shell. In order to compare to the analogous Yang-Mills results, we will only
focus on the components of T̃µ⌫(k) which contribute to the radiation field at infinity. In particular, the canonically
normalized graviton emission amplitude simplifies to
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, (50)
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explicit form can be found, e.g., in [5]. The remaining contribution to T̃µ⌫(k) at this order in the interactions is
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In all these equations, we have dropped terms that vanish when kµ is on-shell, as these do not contribute to the
asymptotic field at r ! 1. However, we have checked that the sum of the diagrams Fig. 2(a)-(e) obeys the Ward
identity kµT̃µ⌫(k) = 0 even for kµ o↵-shell. In order to compare to the analogous Yang-Mills results, we will only
focus on the components of T̃µ⌫(k) which contribute to the radiation field at infinity. In particular, the canonically
normalized graviton emission amplitude simplifies to
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In all these equations, we have dropped terms that vanish when kµ is on-shell, as these do not contribute to the
asymptotic field at r ! 1. However, we have checked that the sum of the diagrams Fig. 2(a)-(e) obeys the Ward
identity kµT̃µ⌫(k) = 0 even for kµ o↵-shell. In order to compare to the analogous Yang-Mills results, we will only
focus on the components of T̃µ⌫(k) which contribute to the radiation field at infinity. In particular, the canonically
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In all these equations, we have dropped terms that vanish when kµ is on-shell, as these do not contribute to the
asymptotic field at r ! 1. However, we have checked that the sum of the diagrams Fig. 2(a)-(e) obeys the Ward
identity kµT̃µ⌫(k) = 0 even for kµ o↵-shell. In order to compare to the analogous Yang-Mills results, we will only
focus on the components of T̃µ⌫(k) which contribute to the radiation field at infinity. In particular, the canonically
normalized graviton emission amplitude simplifies to
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FIG. 3: Leading order Feynman diagrams in the perturbative expansion of the scalar emission amplitude As(k).

where we have only assumed that the polarization tensor obeys the deDonder gauge condition kµ✏µ⌫(k) = 1
2k⌫✏�

�(k).
Note in particular that, by construction, all explicit dependence on the spacetime dimensionality cancels in this on-
shell quantity. This would not be true for the non-radiative components of the solution at this order, and it would
not be true of the radiation amplitude in pure gravity (diagrams (a), (b), (d) in Fig. 2). This cancellation is what
dictates the choice of scalar interactions, and is going to be important later when we discuss double copy relations
between the Yang-Mills solution and the result in Eq. (50).

We can use the same methods to calculate the amplitude for dilaton emission from the classical system. Inserting
the solution to Eq. (42) into Fig 3(a), we obtain the following contribution to As(k) (defined in Eq. (37)),
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, (51)

and working at zero deflection,

Fig. 3(b) = � 1
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Fig. 3(c) = � 1
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Fig. 3(d) = � 1
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The sum of these diagrams then gives the scalar radiation amplitude

As(k) = � 1
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(55)

scalar channel:

Check:   PN limit in 4D
hij(t,~n) =

2GN

r
[Q̈ij(t)]

TT

�(t,~n) =
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r

X

↵

m↵

✓
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◆
,

Qij =
X

↵
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✓
xi
↵x

j
↵ � 1

3
�ij~x2

↵

◆

(Will+Zaglauer 1989; Damour+Esposito-Farrese, 1992)agrees with



Axion radiation and particle spin
Goldberger, Li, Prabhu PRD 2018

If our classical quarks carry spin, it is possible to introduce a “chromo-magnetic” dipole 
interaction with the gluon field    

This is the relativistic version of the more familiar (in 4D) magnetic dipole interaction 

Sint = �gs

m

Z
dtca~S · ~Ba

with Lande g-factor given by 
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Eqns of motion from conservation laws:
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Then the total current at           , working to linear order in spin:
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FIG. 1: Feynman diagrams for the perturbative expansion of J̃µ
a (k). up to order O(g2s). The diagram (a) represents corrections

to the spin-independent particle due to the spin equations of motion. Diagrams (b)-(c) correspond to the a single insertion of
the spin-dependent color current.

Given the form of the energy-momentum tensor, the equations of motion which follow from energy-momentum con-
servation

d
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p
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a
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They imply in particular that Sµ⌫S
µ⌫ and

m
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2
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F
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are conserved along the worldline.
Our goal in this section is to compute the gluon radiation field sourced by a collection of interacting spinning

particles in self-consistent orbits. For our purposes in this paper, it is su�cient to compute the spin dynamics to
linear order in spins. We solve the equations of motion as a perturbative expansion, formally in powers of the gauge
coupling gs we adopt the methods of [? ]. The starting point is the Yang-Mills equations, written in the gauge
@µA

µ
a = 0,

⇤A
µ
a = J̃

µ
a (x) = J

µ
a + f

abc
A

b
⌫(@⌫

A
µ
c � F

µ⌫
c ), (12)

where the current J̃
µ
a (x) is conserved, @µJ̃

µ
a (x) = 0, but not gauge invariant. Nevertheless, it is related to physical

quantities measured by observers at infinity. In particular, the long distance radiation field is related to the momentum
space current J̃

µ
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R
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d
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µ
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2 = 0. For example, in d = 4 dimensions the radiation
field is given by
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with k
µ = (!,~k) = !(1, ~x/r), and similarly for general d.

As long as the particles remain well separated, the on-shell current J̃
µ
a (k) can be calculated in perturbation theory,

in terms of Feynman diagrams such as those (up to second order in the gauge coupling) are shown in Fig. 1. These
diagrams are computed using standard Yang-Mills Feynman rules, with insertions of the classical particle current
Eq. (??). The contribution from Fig. 1(a) is, to all orders in perturbation theory can be written formally as
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Same formal replacement rules as before, w/.                     yields a gravitational field

J̃µ
a (k) ! iT̃µ⌫(k)

which is again of the form 

Once again, this encodes spin-2 (graviton) and spin-0 (dilaton) waves.    In addition, there 
is radiation in the (anti-symmetric) axion channel
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Double copy

Sµ⌫ ! Sµ⌫

So turning on spin, we are now sensitive to all the massless fields in the decomposition

Aµ ⌦A⌫ = ��Bµ⌫ � hµ⌫
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Focusing on axion radiation, the double copy can be used to read off the interactions of 
the gravitational theory:

curly=axion        wavy=graviton       dashed=dilaton



In the spinning case, theoretical consistency of the double-copy map imposes 
constraints on the form of the gravitational interactions:
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with point-particle, axion interaction:

(which reduces to 4D non-relativistic axion coupling to spin, of the form                          )Hint / ~S ·ra

This Lagrangian precisely matches the low energy limit of (closed) string theory, which 
contains the massless gravitational fields                                                    , i.e:(�, gµ⌫ , Bµ⌫) (Scherk, Schwarz 1974)

(Classical QCD)2 = Low energy string theory



Open questions:
• Classical correspondence at higher orders in perturbation 

theory?     See Shen, 1806.07388.   


• First principles understanding?   Can it be derived from 
string theory?


• We see the same gravity theory emerge from color-
kinematics duality as BCJ.    What is the precise 
connection with scattering amplitudes


• Can we efficiently remove the extra gravitational modes in 
order to recover pure GR solutions? (see D. O’Connell et. al, 
1711.03901; Johansson+Ochirov 1407.4772)



• We are entering a golden era of GW astrophysics. 


• EFT methods from QCD play an important role in 
compact binary inspirals.


• Color-to-kinematics relates “simple” pQCD calculation to 
hard (string) gravity one.

Summary and conclusions


