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Beautiful Theories in Physics 
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Work a century in the making ! 

Beautiful Theories in Physics 
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Beautiful Theories in Physics 

An amazing understanding 
at vastly different scales



Building An Understanding Of The Universe
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Discovery of the electron, J.J. Thompson (1897) Discovery of the neutron, J. Chadwick (1932)

Discovery of quarks, Friedman, Kendall, Taylor (1969) Discovery of Higgs boson, CERN (2012)



An Edifice Hundred Years In The Making 
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Particle Standard Model 
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Particle Standard Model Cosmology Standard Model 

LCDM



An Edifice Hundred Years In The Making 
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Particle Standard Model Cosmology Standard Model 

LCDM
… it is highly predictive and has been rigorously 

tested in some cases to 1 part in 10 billion



Completing The Edifice 
l These “Standard Models” are among the highest intellectual achievements
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QCD



Completing The Edifice 
l These “Standard Models” are among the highest intellectual achievements

l The potential exists now to revolutionize our knowledge again.
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QCD



Mystery: The Higgs Boson
l Scalar particle 
l Relation to inflationary field
l Self-interaction  
l Composite particle ?
l How many are there ? 
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Mystery: The Proton
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l Gluon Energy 55%
l Quark Energy 44%
l Quark Mass 1%

Proton Mass Proton Spin Confinement

l Valence Quarks 1/3 
l Gluons 1/3

l Proton vs Nucleus
Behavior



Mystery: Cosmic Inflation
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Relation of Field that Powered Inflation and the Higgs ?



Mystery: Dark Sector 
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Dark Matter



Mystery: Dark Sector 
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Dark Matter Dark Energy



Mystery: Matter Asymmetry
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Early Universe 

10,000,000,001

Matter

10,000,000,000

Anti-Matter



Mystery: Matter Asymmetry

Symposium CFNS  -- M. Demarteau, November 29, 2018 Slide 17

Now

1

Matter

0

Anti-Matter



The Puzzle Of The Mysteries 
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When	one	tugs	at	a	single	thing	
in	nature,	he	finds	it	hitched	to	

the	rest	of	the	universe.

-- John	Muir	



Gaining Clarity and Understanding 
l Our approach and interpretation is driven by our 

l Experiences (perceptions) 
l Theory (top-down) 
l Data (bottom-up)

l When we know the characteristics and context of what to expect 
a little data goes a long way (top-down dominates)

l When we do not know the characteristics and context of what to 
expect, a lot of high precision data is required (bottom-up 
dominates)
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Adapted from Ian Shipsey
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Statue of Liberty 
New York City

With a Roadmap: 
Little data needed
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The Persistence of Memory
Salvador Dali

Without a Roadmap: 
Lots of data needed
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We are very much in a data driven era ! 
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“New directions in science are 
launched by new tools much more 
often than by new concepts.”

Freeman Dyson



New Tools: Electron Ion Collider
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New Tools: Electron Ion Collider
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parameter eRHIC JLEIC
Beam Configuration p e p e

Energy/beam [GeV] 40 – 275 5 – 18 8 – 100 3 – 12

bunch spacing [ns] 8.9 2.1

RMS bunch length (cm) 5 1.9 ~1.0 1.0



New Tools: Detectors
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Solenoid

EM Calorimeter

Hadron Calorimeter

Flux Return

Central Tracker

Forward Tracker

Particle ID

p/A

e

Forward (h > 0)Backward (h < 0)



New Tools: Detectors 
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New Tools: Detectors 
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New Tools: Detectors 
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l Modest particle multiplicity 
l Modest integrated radiation dose
l Relatively low momenta 
l Different requirements for 

different regions
l Premium of forward direction 

l Short bunch crossing (8.9/2.1 ns)
l Q2 tagger, polarization 

measurement 



New Tools: Detectors 
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Physics Drivers  
l Good momentum resolution (+ particle id)

!"($) $ = 0.05% +⊕ 1% (central)
!"($) $ = 0.1% +⊕ 2% (forward)

l Good impact parameter resolution (low mass)
/ = 5 ⊕ 15 / p 012

3
4 5 (µm)  (central) 

l Excellent EM energy resolution 
/ = 10% / 6 central
/ = 2% / 6 forward

l Good hadronic energy resolution 
/ = 50% / 6

l Excellent particle identification π/K/p
l Forward h:    up to ~50 GeV/c
l Central h:      up to ~5-8 GeV/c
l Backward h:  up to ~7 GeV/c



Vertexing and Flavor Tagging
l Measure point of origin of tracks as accurately as 

possible 
l Excellent impact parameter resolution
l Good single hit resolution 
l Good primary vertex resolution

l Challenges: 
l Lowest possible mass budget 
l Low power, low occupancy 
l Best position resolution 
l Timing information for each hit 
l As close as possible to the interaction point 
l Radiation hard

l Silicon technology a prime candidate 
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dominated by
single-point 
resolution

multiple-scattering 
term => low 

material!

D+ → K+p+p-

ct = 311 µm



Hybrid Pixel Chips 
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l Q collection by drift

Hybrid Pixel 



Depleted Monolithic Active Pixel Sensors
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l Q collection by drift

Hybrid Pixel 

l Separate functionalities l Integrated functionalities 



Depleted Monolithic Active Pixel Sensors 
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CMOS-MAPS

l Q collection by drift

Hybrid Pixel 

l Charge collection by drift and diffusion 

Depleted CMOS

l Large Fill Factor, collection by drift

Depleted CMOS

l Small Fill Factor, collection by drift

l Separate functionalities l Integrated functionalities 



l Pixel design in modified Tower-Jazz process 
l Low noise, high collection speed 
l Epitaxial layer only 25 µm thick → Q < 2000 e
l Radiation hardness to be studied 

Depleted CMOS Pixel Chips 

l Tremendous progress in CMOS pixel designs
l Power < 40mW/cm2

l Integration time <4µs
l Low material budget (~ 0.3% X0 per layer)
l Moderate radiation hardness (~Mrad, 1013 1MeV neq/cm2)
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All Silicon Tracking
l All silicon pixel tracking becoming possible 

l Configuration: 20µm pixels, 18 mm inner radii and 185 mm outer radii disks; 
l Material budget: 0.3% X0 beam-pipe, 0.3% X0 for each disk
l Disks are equidistant in z; nominal collision vertex
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Hypothetical all-Si tracker in a 3T Solenoidal field.

Helix track model
Multiple scattering
Track reconstruction based on 
digitized hits using Kalman filter



Magnetic Cloak 
l The integral of the B-field along the particle pathlength is limited in the forward 

region. Dipole fields with shielded areas  would be desirable

l Shield a 0.5 T field with a 10 cm SC cylinder with 
a multi-layer shield

l Demonstrated magnetic field cloaking with 99% field 
shielding and 90% reduced field distortions next to the shield at 0.45 T
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Figure 11: Magnetic field component By measured in the center of the 4.5 inch long, 45-layer
HTS shield prototype inside the MRI magnet as a function of the nominal magnetic field Ba

in linear scale (top panel) and logarithmic scale (bottom panel). The open markers indicate
field measurements showing an increase over time. The vertical lines mark By = 0.5 T and
By = 1.0 T. A line indicating By = Ba · 0.01 is shown as well.

11



Micro-Pattern Gas Detector Tracking
l Micro-Pattern Gas Detector (MPGD) based tracking detectors hold the promise of 

providing robust and cost-effective tracking detectors. 

l Note: if entrance is covered with appropriate photocathode, can also be used for 
photodetection 
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Micromesh Gas Detector (MicroMegas) Gas Electron Multiplier (GEM)



Micro-Pattern Gas Detector Tracking
l Micro-Pattern Gas Detector (MPGD) based tracking detectors hold the promise of 

providing robust and cost-effective tracking detectors. 
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Micromesh Gas Detector (MicroMegas) Gas Electron Multiplier (GEM)

MicroMegas-based curved barrel 
tracking system being developed

Forward/Backward tracking system based 
on triple-GEM TPC being developed 



Micro-Pattern Gas Detector Readout
l Readout of electron cloud from the gain stage of MPGDs for optimal position resolution 

and low channel count
l Many readout variants being studied by the 

community: 
l Wires 
l Strips and Cross strips 
l CMOS integrated circuits 

l Zig-Zag readout pattern tested with 
3-stage GEM detector

l Optimization of the zigzag pad readout 
pattern parameters

l Good linearity of source and reconstructed
position 

l Spatial resolution better than 70 µm 
l Room for optimization for charge sharing, 

interleaving, small transverse diffusion, etc
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Cherenkov Time Projection Chamber
l Combine the functions of a Time Projection Chamber for charged particle tracking and 

a Cherenkov detector for electron identification in the same volume
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Cherenkov Time Projection Chamber
l Combine the functions of a Time Projection Chamber for charged particle tracking and 

a Cherenkov detector for electron identification in the same volume

l Prototype:  
l TPC: 10cm drift + 10x10cm2 4-GEM
l Cherenkov: 3.3x3.3cm2 pad array + 

10x10cm2 4-GEM
l Common Gas: CF4 (vdrift = 7.5cm/µs)

l Successful demonstration of proof of principle  
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Charge

Particles above threshold 
Particles below threshold



Particle Identification 
l Particle identification (PID) is crucial for an EIC with many challenges: 

l Large momentum range; requirements vary over rapidity 
l Compact detector, limited space; few photons; photodetectors in B-field 
l … 

l There are also opportunities due to recent photodetector developments, such as pixel 
size, UV-sensitivity, photodetector materials and processing, … 
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Backward Central Forward

l DIRC
l p < 6 GeV/c 

l Dual Radiator RICH
l p > 10 GeV/c

l Modular RICH 
l p < 7 GeV/c



PID: Modular Ring Imaging Cherenkov

l Lens-based design allows for more compact detector 
compared to proximity focusing 
l First use of lens-based detector (rad. hardness) 
l Smaller, but sharper ring; few photons !

120 GeV Proton: R=19.1 mm, Ng = 11.0 +/- 2.9, Ngdet = 5.9 +/- 1.8 
l Requires good position resolution for ring reconstruction
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P. Nadel-Turonski

9 GeV/c p
Ns

K/p separation 

120 GeV proton

FNAL Test Beam



PID: Detection of Internally Reflected Cherenkov light

l Highly pixelated photodetectors required with exceedingly 
good timing resolution (<100ps) in magnetic field 

l Compact focusing camera system 
l Extension of PID to higher momenta desired 
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PID: Dual Ring Imaging Cherenkov Detector
l EIC would be the first dual-radiator RICH developed for use with solenoidal detector
l Combination of C2F6 gas and n=1.02 aerogel leaves no gaps in coverage
l Outward-reflecting mirrors reduce backgrounds and (UV) scattering in aerogel
l Required sophisticated 3D focusing to reduce photosensor area
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Simulation 



Micro-Channel Plate Photodetectors 
l To date, Micro-Channel Plate (MCP) photodetectors 

have the best timing resolution, but B-field sensitivity 
l Two main issues: 

l Very expensive 
l Not tolerant to magnetic fields  

l Photodetectors: Arguably one of the key R&D issues 
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Time-Of-Flight Detection 
l Time-Of-Flight (TOF) detectors can be powerful

particle identification detectors at low momenta
l Development of Low-Gain Avalanche Diodes (LGAD)

l Additional doping layer before collection diode 
l Charge multiplication with moderate gain: 10 – 50
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Electronics noise

l Demonstrator LGAD device 
l LGAD sensors: 2x4 cm2

l Pixel size: 1.3x1.3 mm2

l Confirmed intrinsic time resolution 
~ 30ps with 50 µm thick LGADs; 

l Overall time resolution ~50ps 



Calorimetry
l Develop cost-effective, flexible techniques to build compact sampling calorimeters that 

meet the EIC physics requirements using new technologies 
l Tungsten powder scintillating fiber (Spacal) calorimeter with square fibers, each block 

readout with 4 SiPMs
l Many test beam campaigns

l Energy resolution of  7%/√E, 
with 1% constant term at 10o, 
2.9% at 4o

l Study of radiation hardness of 
SiPM (non-uniform damage)

l Study of improvements in 
uniformity of response 
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  Optimization (geometry, coupling, length of light guides) of light collection:
Compact scheme with 4 
SiPMs, which only 
partially covering output 
area and partially mixed 
light due to short light 
guide especially prone to 
be non-uniform.




  


5

•  UV LED Mapping. Uniformity of 
Light Collection •  Fibers bent away from the light guide edges to 

minimize losses at edges.
•  Fibers bent away in the center of the tower to 

equalize with corners.



Crystal Calorimetry
l Crystal calorimetry provides the best energy resolution for EM showers 
l Crystals, however, are expensive, limited number of vendors, production difficulties, …
l Is glass calorimetry an option? 
l Nano-sized particles of BaSi2O5

l Improve scintillation
l Allows doping with Gd, Yb, Ce, …
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PWO
Glass
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10 - 20 GB/s

40 MHz ~ n TB/s

0.5 - 1 MHz

112 - 400 MHz

Data Acquisition 

Larger detectors
Higher granularity
More data 

l Tracking and calorimeter each have 
substantial raw data rates

l Large capacity event-building 
network required

l Conventional triggered architecture 
most likely replaced by real-time 
processing architecture 

l Early days, but interesting R&D 
required for most efficient data 
acquisition architecture, preferably 
based on commercial devices 

ASIC

ATCAFPGA

GPUHPC



Conclusions
l An Electron-Ion Collider will contribute profoundly to the understanding 

of matter and be an important component in our suite of tools to again  
revolutionize our knowledge in the next decades. 

l To mine the vast amount of data to expose the fundamental laws of 
Nature, highly sensitive instruments are needed. 

l The future ain’t what it used to be!   Up to the challenge? 
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Proton Mass 
l Four contributions to the proton mass: 

l Quark condensate ( ∼9%)
l Quark energy ( ∼32%) 
l Gluonic field strength energy ( ∼37%) 
l Anomalous gluonic contribution ( ∼23%) 
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Y.-B. Yang, J. Liang, Y.-J. Bi, Y. Chen, T. Draper, K.-F. 
Liu, and Z. Liu, “Proton mass decomposition from the 
QCD energy momentum tensor,” Phys. Rev. Lett. 121, 

212001 (2018).



Contributions To Resolution 
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Dependence on signal size

→ Minimize using Time over Threshold and Amplitude measurement 

Varying density of e-hole pairs along path 

→ Minimized by decreasing sensor thickness

Dependence on drift velocity

→ Minimize with uniform electric fields

Dependence on signal noise

→ Minimized with fast signals and large S/N

Contribution from RO electronics

→ Sophisticated ASIC design



Micro-Channel Plate Photodetectors 
l To date, Micro-Channel Plate (MCP) photodetectors 

have the best timing resolution 
l Two main issues: 

l Very expensive 
l Not tolerant to magnetic fields  
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PID: Modular Ring Imaging Cherenkov

l Lens-based design allows for more compact detector 
compared to proximity focusing 
l First use of lens-based detector (rad. hardness) 
l Smaller, but sharper ring; few photons (~11) 
l Requires good position resolution for ring reconstruction
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P. Nadel-Turonski

9 GeV/c p
Ns

K/p separation 



Time-of-Flight 
l Precisely measure hit timing in silicon detector  
l Low Gain Avalanche Detectors (LGAD):   

l add an extra doping layer to create avalanche 
l maximize the slew rate, dV/dt;  
l E ~ 300 kV/cm, closed to breakdown 

voltage 
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MPGD-based Photon Detection 
l Particle Identification over large momentum range is crucial for EIC physics 
l Developing MPGDs as Ring Imaging Cherenkov (RICH) detector 

l Possibility to develop nano-diamond based 
photocathodes (CsI vacuum process, ageing) 

l Peak QE is 47% ! 
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Fused Silica Window
Protection Wires
Drift Wires 
CsI Photocathode

THGEM 1

THGEM 2
Mesh

Anode pad readout

L.Velardi, A.Valentini, G.Cicala, 
Diamond & Related Materials 76 (2017) 1



New Tools: Detectors 
l f
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Detector Requirements 
Physics Drivers  
l Good momentum resolution

!"($) $ = 0.05% +⊕ 1% (central)
!"($) $ = 0.1% +⊕ 2% (forward)

l Good impact parameter resolution
/ = 5 ⊕ 15 / p 012

3
4 5 (µm)  (central) 

l Excellent EM energy resolution 
/ = 10% / 6 central
/ = 2% / 6 forward

l Good hadronic energy resolution 
/ = 50% / 6

l Low Q2 tagger, precise pol. measurement
l Excellent particle identification π/K/p

l Forward h:    up to ~50 GeV/c
l Central h:      up to ~5-8 GeV/c
l Backward h:  up to ~7 GeV/c
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Accelerator Drivers 
l Interaction region layout affects:

l Low Q2 tagger
l Compton polarimeter 

l Low pile-up, modest multiplicities
l Short bunch crossing time 
l Modest radiation hardness
l Forward region radiation hard EM 

calorimetry 

Environment and requirements very 
different from multi-purpose LHC experiments 


