EIC Detector Technology Challenges The R&D program

Inaugural Symposium of the Center for Frontiers in Nuclear Science

> Stony Brook November 29, 2018

> > Marcel Demarteau <u>demarteau@anl.gov</u>

Argonne National Laboratory

Beautiful Theories in Physics

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

$$\mathcal{J} = -\frac{1}{4} F_{m\nu} F^{m\nu} + i F \mathcal{D} \mathcal{V} + h.c$$

$$+ \frac{\gamma_{ij}}{p_{j}} \phi + h.c$$

$$+ \left| D_{\mu} \phi \right|^{2} - \sqrt{\phi}$$

Beautiful Theories in Physics

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

$$\mathcal{J} = -\frac{1}{4} F_{n\nu} F^{n\nu} + i F \mathcal{B} \mathcal{V} + h.c$$

Work a century in the making !

+
$$f_i \mathcal{Y}_{ij} f_j \phi + h.c$$

+ $|D_{\mu}\phi|^2 - \sqrt{\phi}$

the universe apart in all directions.

In less than 10⁻³⁰ of a second after the Big Bang, the universe burst open, expanding faster than the speed of light and flinging all the matter and energy in

The universe expanded violently from an extremely hot and dense initial state some 13.7 billion years ago.

YOU ARE HERE

ACCELERATING EXPANSION A little more than 5 billion years ago. dark energy caused the universe to expand increasingly fast.

INFLATION

Beautiful Theories in Physics

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

Building An Understanding Of The Universe

Discovery of the electron, J.J. Thompson (1897)

Discovery of quarks, Friedman, Kendall, Taylor (1969)

Discovery of the neutron, J. Chadwick (1932)

Discovery of Higgs boson, CERN (2012)

An Edifice Hundred Years In The Making

Particle Standard Model

An Edifice Hundred Years In The Making

An Edifice Hundred Years In The Making

Particle Standard Model

Cosmology Standard Model

Λ_{CDM}

... it is highly predictive and has been rigorously tested in some cases to 1 part in 10 billion

Completing The Edifice

• These "Standard Models" are among the highest intellectual achievements

Completing The Edifice

• These "Standard Models" are among the highest intellectual achievements

• The potential exists now to revolutionize our knowledge again.

Mystery: The Higgs Boson

- Scalar particle
- Relation to inflationary field
- Self-interaction
- Composite particle ?
- How many are there ?

Mystery: The Proton

Proton Mass

Proton Spin

Confinement

- Gluon Energy 55%
- Quark Energy 44%
- Quark Mass 1%

- Valence Quarks 1/3
- Gluons 1/3

Proton vs Nucleus
 Behavior

Mystery: Cosmic Inflation

Relation of Field that Powered Inflation and the Higgs ?

Mystery: Dark Sector

Dark Matter

Symposium CFNS -- M. Demarteau, November 29, 2018

Mystery: Dark Sector

Mystery: Matter Asymmetry

Early Universe

Mystery: Matter Asymmetry

1

Anti-Matter

0

Now

The Puzzle Of The Mysteries

When one tugs at a single thing in nature, he finds it hitched to the rest of the universe.

-- John Muir

Gaining Clarity and Understanding

- Our approach and interpretation is driven by our
 - Experiences (perceptions)
 - Theory (top-down)
 - Data (bottom-up)
- When we know the characteristics and context of what to expect a little data goes a long way (top-down dominates)
- When we do not know the characteristics and context of what to expect, a lot of high precision data is required (bottom-up dominates)

Slide 19

With a Roadmap: Little data needed

Statue of Liberty New York City

Without a Roadmap: Lots of data needed

The Persistence of Memory Salvador Dali

5

We are very much in a data driven era !

"New directions in science are launched by new tools much more often than by new concepts."

Freeman Dyson

New Tools: Electron Ion Collider

New Tools: Electron Ion Collider

Ó

m

e)

parameter	eRHIC		JLEIC	
Beam Configuration	p	e	ρ	е
Energy/beam [GeV]	40 – 275	5 - 18	8 - 100	3 – 12
bunch spacing [ns]	8.9		2.1	
RMS bunch length (cm)	5	1.9	~1.0	1.0

e-

e-)

Symposium CFNS -- M. Demarteau, November 29, 2018

Physics Drivers

- Good momentum resolution (+ particle id) $\frac{\sigma(p)}{p} = 0.05\% p \oplus 1\%$ (central) $\frac{\sigma(p)}{p} = 0.1\% p \oplus 2\%$ (forward)
- Good impact parameter resolution (low mass) $\sigma = 5 \oplus 15 / p \sin^{\frac{3}{2}} \vartheta$ (µm) (central)
- Excellent EM energy resolution
 - $\sigma = 10\% / \sqrt{E}$ (central)
 - $\sigma = 2\% / \sqrt{E}$ (forward)
- Good hadronic energy resolution

 $\sigma = 50\% \, \text{/} \, \sqrt{E}$

- Excellent particle identification $\pi/K/p$
 - Forward η : up to ~50 GeV/c
 - Central η : up to ~5-8 GeV/c
 - Backward η: up to ~7 GeV/c

Vertexing and Flavor Tagging

- Measure point of origin of tracks as accurately as possible
 - Excellent impact parameter resolution
 - Good single hit resolution
 - Good primary vertex resolution
- Challenges:
 - Lowest possible mass budget
 - Low power, low occupancy
 - Best position resolution
 - Timing information for each hit
 - As close as possible to the interaction point
 - Radiation hard
- Silicon technology a prime candidate

Hybrid Pixel Chips

Hybrid Pixel

• Q collection by drift

Depleted Monolithic Active Pixel Sensors

Hybrid Pixel

• Q collection by drift

Depleted Monolithic Active Pixel Sensors

Hybrid Pixel

• Q collection by drift

• Separate functionalities

Integrated functionalities

• Charge collection by drift and diffusion

• Small Fill Factor, collection by drift

Symposium CFNS -- M. Demarteau, November 29, 2018

Depleted CMOS Pixel Chips

- Pixel design in modified Tower-Jazz process
- Low noise, high collection speed
- Epitaxial layer only 25 μ m thick \rightarrow Q < 2000 e
- Radiation hardness to be studied

Tremendous progress in CMOS pixel designs

- Power < 40mW/cm²
- Integration time <4µs
- Low material budget (~ 0.3% X₀ per layer)
- Moderate radiation hardness (~Mrad, 10¹³ 1MeV n_{eq}/cm²)

ALPIDE (ALICE)

All Silicon Tracking

• All silicon pixel tracking becoming possible

- Configuration: 20µm pixels, 18 mm inner radii and 185 mm outer radii disks;
- Material budget: 0.3% X₀ beam-pipe, 0.3% X₀ for each disk
- Disks are equidistant in z; nominal collision vertex

Magnetic Cloak

• The integral of the B-field along the particle pathlength is limited in the forward region. Dipole fields with shielded areas would be desirable

 Demonstrated magnetic field cloaking with 99% field shielding and 90% reduced field distortions next to the shield at 0.45 T

Micro-Pattern Gas Detector Tracking

 Micro-Pattern Gas Detector (MPGD) based tracking detectors hold the promise of providing robust and cost-effective tracking detectors.

 Note: if entrance is covered with appropriate photocathode, can also be used for photodetection

Micro-Pattern Gas Detector Tracking

 Micro-Pattern Gas Detector (MPGD) based tracking detectors hold the promise of providing robust and cost-effective tracking detectors.

Micromesh Gas Detector (MicroMegas)

MicroMegas-based curved barrel tracking system being developed

Gas Electron Multiplier (GEM)

Forward/Backward tracking system based on triple-GEM TPC being developed

Micro-Pattern Gas Detector Readout

- Readout of electron cloud from the gain stage of MPGDs for optimal position resolution and low channel count
- Many readout variants being studied by the community:
 - Wires
 - Strips and Cross strips
 - CMOS integrated circuits
- Zig-Zag readout pattern tested with 3-stage GEM detector
- Optimization of the zigzag pad readout pattern parameters
- Good linearity of source and reconstructed position
- Spatial resolution better than 70 µm
- Room for optimization for charge sharing, interleaving, small transverse diffusion, etc

Cherenkov Time Projection Chamber

• Combine the functions of a Time Projection Chamber for charged particle tracking and a Cherenkov detector for electron identification in the same volume

Cherenkov Time Projection Chamber

 Combine the functions of a Time Projection Chamber for charged particle tracking and a Cherenkov detector for electron identification in the same volume

- Prototype:
 - TPC: 10cm drift + 10x10cm² 4-GEM
 - Cherenkov: 3.3x3.3cm² pad array + 10x10cm² 4-GEM
 - Common Gas: CF₄ (vdrift = 7.5cm/µs)
- Successful demonstration of proof of principle

Particle Identification

- Particle identification (PID) is crucial for an EIC with many challenges:
 - Large momentum range; requirements vary over rapidity
 - Compact detector, limited space; few photons; photodetectors in B-field
- There are also opportunities due to recent photodetector developments, such as pixel size, UV-sensitivity, photodetector materials and processing, ...

Backward

DTRC

p < 6 GeV/c

Central

Detector

Vgroup

Forward

- **Dual Radiator RICH**
- p > 10 GeV/c

Modular RICH p < 7 GeV/c

Symposium CFNS -- M. Demarteau, November 29, 2018

PID: Modular Ring Imaging Cherenkov

- Lens-based design allows for more compact detector compared to proximity focusing
 - First use of lens-based detector (rad. hardness)
 - Smaller, but sharper ring; few photons !
 120 GeV Proton: R=19.1 mm, N_γ = 11.0 +/- 2.9, N_{ydet} = 5.9 +/- 1.8
 - Requires good position resolution for ring reconstruction

PID: Detection of Internally Reflected Cherenkov light

Different opening angle for the same momentum \rightarrow Different propagation length (=propagation time)

Simulation 2GeV/c, θ=90 deg

- Highly pixelated photodetectors required with exceedingly good timing resolution (<100ps) in magnetic field
- Compact focusing camera system
- Extension of PID to higher momenta desired

PID: Dual Ring Imaging Cherenkov Detector

- EIC would be the first dual-radiator RICH developed for use with solenoidal detector
- Combination of C_2F_6 gas and n=1.02 aerogel leaves no gaps in coverage
- Outward-reflecting mirrors reduce backgrounds and (UV) scattering in aerogel
- Required sophisticated 3D focusing to reduce photosensor area

Micro-Channel Plate Photodetectors

- To date, Micro-Channel Plate (MCP) photodetectors have the best timing resolution, but B-field sensitivity
- Two main issues:
 - Very expensive
 - Not tolerant to magnetic fields
- Photodetectors: Arguably one of the key R&D issues

I.R.F = Instrument Response Function

Time-Of-Flight Detection

- Time-Of-Flight (TOF) detectors can be powerful particle identification detectors at low momenta
- Development of Low-Gain Avalanche Diodes (LGAD)
 - Additional doping layer before collection diode
 - Charge multiplication with moderate gain: 10 50

- Demonstrator LGAD device
 - LGAD sensors: 2x4 cm²
 - Pixel size: 1.3x1.3 mm²
- Confirmed intrinsic time resolution
 ~ 30ps with 50 µm thick LGADs;
- Overall time resolution ~50ps

Calorimetry

- Develop cost-effective, flexible techniques to build compact sampling calorimeters that meet the EIC physics requirements using new technologies
- Tungsten powder scintillating fiber (Spacal) calorimeter with square fibers, each block readout with 4 SiPMs
- Many test beam campaigns

- Energy resolution of 7%/JE, with 1% constant term at 10°, 2.9% at 4°
- Study of radiation hardness of SiPM (non-uniform damage)
- Study of improvements in uniformity of response

Crystal Calorimetry

- Crystal calorimetry provides the best energy resolution for EM showers
- Crystals, however, are expensive, limited number of vendors, production difficulties, ...
- Is glass calorimetry an option?
- Nano-sized particles of BaSi₂O₅
 - Improve scintillation
 - Allows doping with Gd, Yb, Ce, ...

Material/ Parameter	PbWO ₄	Sample 1	Sample 2	Sample 3	Sample 4
Luminescence (nm)	420	440	440	440	440
Relative light output (compared to PbWO ₄)	1	35	16	23	11

Material	Density (g/cm³)	X ₀ (cm)	Emission peak (nm)	Cutoff (nm)	Zeff
(BaO*2SiO ₂):Ce glass	3.7	3.6	440, 460	310	51
DSB:Ce	3.8	3.5	440, 460	310	51
(BaO*2SiO ₂):Ce glass loaded with Gd	4.7-5.4	2.2	440, 460	318	58

Data Acquisition

Larger detectors **Higher granularity** More data

network required

substantial raw data rates

Large capacity event-building

most likely replaced by real-time

processing architecture

Early days, but interesting R&D required for most efficient data acquisition architecture, preferably based on commercial devices

 $\overline{}$

Conclusions

- An Electron-Ion Collider will contribute profoundly to the understanding of matter and be an important component in our suite of tools to again revolutionize our knowledge in the next decades.
- To mine the vast amount of data to expose the fundamental laws of Nature, highly sensitive instruments are needed.
- The future ain't what it used to be! Up to the challenge?

Proton Mass

- Four contributions to the proton mass:
 - Quark condensate (~9%)
 - Quark energy (~32%)
 - Gluonic field strength energy (~37%)
 - Anomalous gluonic contribution (~23%)

Y.-B. Yang, J. Liang, Y.-J. Bi, Y. Chen, T. Draper, K.-F. Liu, and Z. Liu, "Proton mass decomposition from the QCD energy momentum tensor," Phys. Rev. Lett. 121, 212001 (2018).

Contributions To Resolution

Micro-Channel Plate Photodetectors

- To date, Micro-Channel Plate (MCP) photodetectors have the best timing resolution
- Two main issues:
 - Very expensive
 - Not tolerant to magnetic fields

I.R.F = Instrument Response Function

 10^{6}

10

Gain

Single photon

10⁵

10

PID: Modular Ring Imaging Cherenkov

- Lens-based design allows for more compact detector compared to proximity focusing
 - First use of lens-based detector (rad. hardness)
 - Smaller, but sharper ring; few photons (~11)
 - Requires good position resolution for ring reconstruction

Time-of-Flight

- Precisely measure hit timing in silicon detector
- Low Gain Avalanche Detectors (LGAD):
 - add an extra doping layer to create avalanche
 - maximize the slew rate, dV/dt;
 - E ~ 300 kV/cm, closed to breakdown voltage

MPGD-based Photon Detection

- Particle Identification over large momentum range is crucial for EIC physics
- Developing MPGDs as Ring Imaging Cherenkov (RICH) detector

- Possibility to develop nano-diamond based photocathodes (CsI vacuum process, ageing)
- Peak QE is 47% !

Symposium CFNS -- M. Demarteau, November 29, 2018

Detector Requirements

Physics Drivers

- Good momentum resolution $\sigma^{(p)}/p = 0.05\% p \oplus 1\%$ (central) $\sigma^{(p)}/p = 0.1\% p \oplus 2\%$ (forward)
- Good impact parameter resolution $\sigma = 5 \oplus 15 / p \sin^{\frac{3}{2}} \vartheta$ (µm) (central)
- Excellent EM energy resolution
 - $\sigma = 10\% / \sqrt{E}$ (central)
 - $\sigma = 2\% / \sqrt{E}$ (forward)
- Good hadronic energy resolution

 $\sigma=50\%\,\text{/}\,\sqrt{E}$

- Low Q² tagger, precise pol. measurement
- Excellent particle identification $\pi/K/p$
 - Forward η : up to ~50 GeV/c
 - Central η : up to ~5-8 GeV/c
 - Backward η : up to ~7 GeV/c

- Interaction region layout affects:
 - Low Q² tagger
 - Compton polarimeter
- Low pile-up, modest multiplicities
- Short bunch crossing time
- Modest radiation hardness
- Forward region radiation hard EM calorimetry

Environment and requirements very different from multi-purpose LHC experiments