Studying The Phases and Structure of QCD Matter : From RHIC to EIC

James (Daniel) Brandenburg Brookhaven National Lab

NATIONAL LABORATORY

H**R**VEN

Shandong University

11/30/18

Inaugural Symposium,

Center for Frontiers in Nuclear Science,

November 30, 2018

CFNS Center, Stony Brook University

Center for Frontiers in Nuclear Science

BRO

A little bit about me

Daniel is my middle name – I've never used my first name (James) I just became a father! So if I seem sleep deprived, it's because I am ⁽²⁾

Studying the QCD phase diagram

Lattice QCD calculations show smooth crossover transition around $T_c \approx 150$ MeV for $\mu_B \approx 0$

- Is there a 1st order phase transition at finite μ_B , and a critical point?
- What is the relationship between the chiral and deconfinement transitions?

Beam Energy Scan (BES) Phase 1

BES 1 : Au+Au collisions at 7.7, 11.5, 14.5, 19.6, 27.0, 39.0, and 62.4 GeV

Primary GOALS:

- Search for Conjectured QCD critical point
- Search for 1st order phase transition
- Search for the onset of key QGP signatures

$\sqrt{s_{NN}}$ [GeV] =	7.7	11.5	14.5	19.6	27.0	39.0	
$^{\sim}\mu_{B}$ (in central collisions)[MeV]	420	315	260	205	155	115	
				<u> </u>			

J. Cleymans, H. Oeschler, K. Redlich, and S. Wheaton, Phys. Rev. C73 (2006) 034905

Energy dependence of jet quenching

Phys. Rev. Lett. 121, 032301 (2018)

11/30/18

Daniel Brandenburg

Energy dependence of jet quenching

More differential measurements through particle identification

- Pions show suppression at lower energies than inclusive hadrons
- Pions are more sensitive probe of jet-quenching
- Only possible with particle identification using Time-of-Flight

Year	Collision System	VPD Single	Stop-side res-	Total Resolu-
	and $\sqrt{s_{NN}}$ (GeV)	PMT Resolu-	olution (ps)	tion (ps)
		tion (ps)		
2012	$p + p \ 200$	100	70	120
	p + p 510	100	70	120
	U+U 193	70	70	75
	Cu+Au 200	92	75	78
2013	p + p 510	133	80	150
2014	Au+Au 14.5	170	84	146*
	³ He+Au 200	96	79	125*
	Au+Au 200	68	70	73
2015	$p + p \ 200$	122	75	113
	$p + Au \ 200$	122	90	98
2016	Au+Au 200	78	74	75
	d+Au 200	114	85	88
	d+Au 62.4	126	90	95
	d + Au 39	152	83	121*
	d + Au 19.6	160	83	128*
2017	p + p 510	137	90	114
	p+p510 RHICf	125	82	¹⁰¹ 6

STAR Dilepton measurements

11/30/18

Daniel Brandenburg

p+Au @ 200 Ge\

N_/v=3347, S/B=1:1.96

p_(GeV/c)

L~409nb⁻¹ lyl<0.5, p_{-1/0}> 0 GeV/c

p+p @ 200 Ge

lyl<0.5, p_{T,J/y}> 0 GeV/c N ⊮=4191, S/B=1:0.72

L~122nh

p_[GeV/c]

Beam Energy Scan II and Fixed Target Program V_v (cm) ⁵Ę

Will provide Au+Au collisions at $\sqrt{s_{NN}}$ = 3.0 – 7.7 GeV

BES II : Refine and improve understanding from BES I Crucial to explore above and below (expected) location of critical point

 V_v vs. V_v Distribution

-1

 $V_{\rm v}$ (cm)

 $210 \text{ cm} < V_7 < 212 \text{ cm}$

Beam Energy Scan II Physics Interests

 10^{3}

10²

10

Linking top RHIC energies with SPS, FAIR energies

 At lower energies: probe lifetime + total baryon density + temperature

Distinguish between models: PHSD and Rapp

- Show evidence for chiral symmetry restoration?
- Reduced charm cross-section -> pristine measurement of medium temperature through intermediate mass dilepton spectra e.g. NA60 thermal dimuons Daniel Brandenburg

Endcap Time of Flight Upgrade

• Leading role in the integration of the eTOF detector into STAR

Demonstrated successful operation during 2017 beam with 3 eTOF modules Additional coverage is crucial for Fixed Target Program

Just finished installation of the full eTOF at STAR

Nuclear structure and properties

- Highly contracted EM fields = photon collider
- Preview of EIC-era physics
- Strong coupling ($Z\alpha_{FM} \sim 0.6$) results in large cross sections
- Not just in ultra peripheral collisions!
- Significant $\gamma \gamma \rightarrow l^+ l^-$ production observed in peripheral A+A collisions
- Photon-pomeron interactions : sensitive to nuclear gluon distribution

Quark Matter 2017: Presented first observation of $\gamma \gamma \rightarrow e^+ e^-$ in peripheral A+A collisions

Novel probe of initial EM field and maybe sensitive to medium properties (conductivity, lifetime of **B** field) 11

11/30/18

EIC Detector Hardware R&D

Successful EIC needs innovative detectors and technologies

Developing Forward Tracking System (FTS) : Tracking + Calorimetry

- Symbiotic with STAR Forward Upgrade
- Integrate detector prototypes into STAR
- Test detector prototypes with collisions in 2019
- Dedicated p+p and p+A program in ~2021
- Address fundamental questions of QCD:
- 3D structure of protons
- Gluon density at high energy, saturation?
- How nuclear environment effects quark and gluon interactions

STAR FTS Software coordinator

Looking to the future

Exciting time to be starting a career in nuclear physics!

I'm looking forward to the next 10 years helping to build the EIC and many more years to learn from it

