Inside of the nucleon: Zooming in and out

Sanghwa Park (Stony Brook University)

RHIC Spin Program: Key questions

- How do gluons contribute to the proton spin?
- What is the landscape of the polarized sea in the nucleon?
- What do transverse spin phenomena teach us about proton structure?

PHENIX pi0: access gluons

RHIC data: direct access to gluons

PHENIX pi0 and STAR jets confirm non-zero gluon spin for x > 0.05

 $\int_{0.05}^{1} dx \Delta g(x) = 0.2_{-0.07}^{+0.06} (Q^2 = 10 \text{GeV}^2)$

Access low-x by higher energy (x down to ~10⁻²) or going forward

More forward p+p measurements, EIC!

W measurements: separating quark flavor

- Clean and direct sensitivity to (anti)quark helicity PDFs via parity violating W production
- Flavor asymmetry of the sea: unpolarized sea asymmetry
 - -> is polarized sea asymmetric?

NNPDFpol1.1 arXiv:1406.7122

Transverse Spin Phenomena

- Lead to surprises and new insights
- Development of theoretical frameworks and a lot of experimental effort recently
- Recent PHENIX measurements heavy flavor, precise pi0 and eta results at mid-rapidity and more.
- Unique pA datasets to study nuclear effects

Accessing Large-x PDFs

 Global analyses to extract PDFs: Regular DIS + Neutrino DIS + Hadron collider data

Precision mapping in wide range of x and Q²

Poorly constrained at small and large x

Higher energy -> EIC! Parton dynamics at high gluon density

Large-x:

Study non-perturbative dynamics of nucleon Improve Iow-x PDFs High energy cross sections at collider

Standard global PDF analysis used stringent cuts on W² and Q² (Large amount of data not used) Q² > 4 GeV² W² > 12.25 GeV²

Quark-hadron duality:

SLAC (1969) Integrated F₂ in nucleon resonance region resemble the strength under scaling curve **Could use averaged resonance data to access large x region**

 $W^2 > 4 \text{ GeV}^2$

SLAC data - limited statistics, low Q² -> JLab 12 GeV can extend Q² coverage with high precision

Experimental setup

Inclusive H(e,e') and D(e,e') measurements

CEBAF electron beam

Successfully completed 12 GeV upgrade in 2017

Hall C High Momentum Spectrometers

- High current 10.6 GeV electron beam
- New Super High Momentum Spectrometer (SHMS)
 expands central momentum range
- LH2 and LD2 targets (F2p, F2d measurements)
- Al target (target cell background subtraction)

F₂d/F₂p Ratio

Very first look of our structure function ratio Assume Rd = Rp $\frac{\sigma^d}{\sigma^p} \approx \frac{F_2^d}{F_2^p}$

Compared with the fit and CJ NLO analysis:

M.E. Christy and P.E. Bosted fit: Phys. Rev. C 81, 055213 (2010) includes resonance data

CJ15NLO:

https://www.jlab.org/theory/cj/ DIS only

F₂n/F₂p Ratio

Very first look of our structure function ratio

- CJ PDF extraction includes state-of-theart deuteron nuclear corrections
- Use CJ corrections to extract F2ⁿ/F2^p ratio

$$\left(\frac{F_2^n}{F_2^p}\right) = \left(\frac{F_2^d}{F_2^p}\right)_{Data} \times \left(\frac{F_2^n + F_2^p}{F_2^d}\right)_{CJ} - 1$$

- Can compare with MARATHON data

Summary

Backup

Experimental setup

Hall C High Momentum Spectrometers

- High current 10.6 GeV electron beam
- New Super High Momentum Spectrometer (SEMS) expands central momentum range
- LH2 and LD2 targets (F2p, F2d measurements)
- AI target (target cell background subtraction)

- Calorimeter based electron PID + pion rejection using Cherenkov detectors
- Drift chambers for tracking
- Scintillator hodoscopes provide timing and form triggers

