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• History: can a fm-size fireball be macroscopic? 

• QCD at finite temperature 

• RHIC and LHC: radial and elliptic flows 

• Sounds and higher harmonics of flow 

• the smallest drops of QGP are very explosive as well 

• QGP kinetic properties are unusual 

• classical and quantum monopole dynamics  

• plasma made of electric+magnetic charges  

• BEC of monopoles and confinement

the 
story

the e/m 
duality and  
monopoles
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 Theory of Hadronic Plasma, ES 
 Sov.Phys.JETP 47 (1978) 212-219, Zh.Eksp.Teor.Fiz. 74 (1978) 408-420

QED: both in vacuum and in plasma  
the charge is screened 

AF=antiscreening of the charge 
 in the QCD vacuum at small r.  

What happens in quark-gluon plasma?  

Screened! (ES,1976)  
perturbative theory of QGP at high T  
because AF at small r and screening at large r. 

1970’s

(a) (b) (c)

presence of matter => preferred frame 
non-Lorenz-invariant gauges possible 

so I followed Khriplovich and Coulomb gauge 
dots are A0, dashed are transverse gluons
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(b) can have minus because there is no physical state 
of transverse and Coulomb fields 

It is this diagram which gives us asymptotic freedom

⇧00(~q ! 0, q0 = 0, T ) = g2T 2(
1

2
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1

2
+

Nf

6
)

Contribution to the screening mass 
the diagram (b) gives nothing 
it is positive! Thus “plasma”

⇧?(~q ! 0, q0 = 0, T ) = 0

http://inspirehep.net/record/121016
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QED: both in vacuum and in plasma  
the charge is screened 

AF=antiscreening of the charge 
 in the QCD vacuum at small r.  

What happens in quark-gluon plasma?  

Screened! (ES,1976)  
perturbative theory of QGP at high T  
because AF at small r and screening at large r. 

1970’s
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(b) can have minus because there is no physical state 
of transverse and Coulomb fields 

It is this diagram which gives us asymptotic freedom

⇧00(~q ! 0, q0 = 0, T ) = g2T 2(
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Contribution to the screening mass 
the diagram (b) gives nothing 
it is positive! Thus “plasma”

⇧?(~q ! 0, q0 = 0, T ) = 0

the magnetic field is not screened 
in any order of perturbation theory 

but it is screened in QGP 
=>   monopoles

http://inspirehep.net/record/121016


• 1980’s: inventing the signals  
meetings attended by a dozen of theorists and few experimentalists 

• penetrating probes ( photons and dileptons )  (ES, 1978).

• Robust hydronamical explosion of the QGP (ES, 1978).

•  jet quenching (Bjorken, 1982) 

•  subsequent melting of charmonium and bottonium states (Matsui and Satz, 1986) 

I dont have the time to speak of photon and deletion data,  heroically obtained, 
but mention only two puzzles 



• 1980’s: inventing the signals  
meetings attended by a dozen of theorists and few experimentalists 

• penetrating probes ( photons and dileptons )  (ES, 1978).

• Robust hydronamical explosion of the QGP (ES, 1978).

•  jet quenching (Bjorken, 1982) 

•  subsequent melting of charmonium and bottonium states (Matsui and Satz, 1986) 

I dont have the time to speak of photon and deletion data,  heroically obtained, 
but mention only two puzzles 

large v2,  implying that 
we do not really  

understand the rates  
in hadronic matter



• 1980’s: inventing the signals  
meetings attended by a dozen of theorists and few experimentalists 

• penetrating probes ( photons and dileptons )  (ES, 1978).

• Robust hydronamical explosion of the QGP (ES, 1978).

•  jet quenching (Bjorken, 1982) 

•  subsequent melting of charmonium and bottonium states (Matsui and Satz, 1986) 

I dont have the time to speak of photon and deletion data,  heroically obtained, 
but mention only two puzzles 

large v2,  implying that 
we do not really  

understand the rates  
in hadronic matter

the initial chemical equilibration of qgp: 
when and how quarks appear? 
pQCD processes not enough  

=> hot glue scenario? 
most likely due to the sphaleron explosions  

ES,Zahed, Venugopalan, Mace



Prehistory 
1950’s



Does the Landau theory describe high energy pp collisions?1970’s 

v|| = tanh(y)
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velocity rapidity

with my generalization (1972) to arbitrary  
value of the sound velocity 

and cs^2=0.2 it described pp data  
from the first hadronic collider ISR CERN 

very well ! 
(and it still does for all pp and AA 

data including RHIC and LHC)

c2s ⌘ dp

d✏

But, if the Landau theory be a correct description of pp collisions 
it would mean the matter is the Resonance Gas and not QGP 
(which has  cs^2=1/3)!

Can it be really true?
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value of the sound velocity 

and cs^2=0.2 it described pp data  
from the first hadronic collider ISR CERN 

very well ! 
(and it still does for all pp and AA 

data including RHIC and LHC)

c2s ⌘ dp

d✏

But, if the Landau theory be a correct description of pp collisions 
it would mean the matter is the Resonance Gas and not QGP 
(which has  cs^2=1/3)!

Can it be really true? (a dream)



The transverse (or radial) flow

Vacuum Pressure Effects In Low P(t) Hadronic Spectra  
Edward V. Shuryak, O.V. Zhirov 1979. 3 Phys.Lett. 89B (1979) 253-255

We decided to look in detail 
at transverse momentum distribution 

of secondaries 

the idea was that particles of different 
mass -pions, kaons, nucleons- 

would be affected by flow 
differently 

the idea was correct but in ISR pp data 
no traces of flow was seen

QGP is produced but  fails to expand 
 against large vacuum pressure … 

It is in a way true: QCD flux tubes are 
Pressure balanced

http://inspirehep.net/record/148252
http://inspirehep.net/author/profile/Shuryak%2C%20Edward%20V.?recid=148252&ln=en
http://inspirehep.net/author/profile/Zhirov%2C%20O.V.?recid=148252&ln=en


The transverse (or radial) flow

Conclusion: no collective flow in  (min.bias) pp collisions, true to this day 

Yet when heavy ions were used in 1980’s, RHIC (>2000) it was observed, by 
this very method 

in the first run of LHC (2010) radial and elliptic flows were observed in  
rare high multiplicity events
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The transverse (or radial) flow

Conclusion: no collective flow in  (min.bias) pp collisions, true to this day 

Yet when heavy ions were used in 1980’s, RHIC (>2000) it was observed, by 
this very method 

in the first run of LHC (2010) radial and elliptic flows were observed in  
rare high multiplicity events

Vacuum Pressure Effects In Low P(t) Hadronic Spectra  
Edward V. Shuryak, O.V. Zhirov 1979. 3 Phys.Lett. 89B (1979) 253-255

We decided to look in detail 
at transverse momentum distribution 

of secondaries 

the idea was that particles of different 
mass -pions, kaons, nucleons- 

would be affected by flow 
differently 

the idea was correct but in ISR pp data 
no traces of flow was seen

QGP is produced but  fails to expand 
 against large vacuum pressure … 

It is in a way true: QCD flux tubes are 
Pressure balanced

The lesson:  sometimes your dreams may come true, but 
many many years later

http://inspirehep.net/record/148252
http://inspirehep.net/author/profile/Shuryak%2C%20Edward%20V.?recid=148252&ln=en
http://inspirehep.net/author/profile/Zhirov%2C%20O.V.?recid=148252&ln=en


Flow at the SPS and RHIC as a quark gluon plasma signature  
D. Teaney, J. Lauret, Edward V. Shuryak Phys.Rev.Lett. 86 (2001) 4783-4786

minijet models: 
in the first approximation 

isotropic uncorrelated 
emission in azimuthal angle; 

in the second: showers 
and thus more secondaries 
 in the longer direction: v2<0

what theorists  
were arguing  
prior to RHIC

hydrodynamics:  
pressure gradient is larger  

in the shorter direction:  
elliptic flow v2>0 

linearly growing with pt

http://inspirehep.net/record/537062
http://inspirehep.net/author/profile/Teaney%2C%20D.?recid=537062&ln=en
http://inspirehep.net/author/profile/Lauret%2C%20J.?recid=537062&ln=en
http://inspirehep.net/author/profile/Shuryak%2C%20Edward%20V.?recid=537062&ln=en


 Contrary to expectations of most, 
hydrodynamics does work at RHIC! 

) 
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 2001-2005: hydro describes radial and elliptic flows for all 
secondaries , pt<2GeV, centralities, rapidities, A (Cu,Au)…  

  Experimentalists were very sceptical but were 
convinced and ``near-perfect liquid” is now official,  

=>AIP declared this to be discovery #1 of 2005 in physics   
  v_2=<cos(2 phi)> 

PHENIX, 
Nucl-ex/0410003 

      red lines are for ES
+Lauret+Teaney 
done before RHIC data, 
never changed or fitted, 
describes SPS data as 
well! It does so because of 
the correct hadronic 
matter /freezout via 
(RQMD) 

proton pion 



The freezeout condition is not T=const, but 
coll.rate=expansion rate:    

Note that theory lines only go to pt= 2 GeV. Can it be used further? 

Thermal spectra describe data till masses of He4, 4 GeV
Exponential spectra turn to power-like at pt>5-6 GeV

Extending the hydrodynamical description of heavy ion collisions

to the outer edge of the fireball

Adith Ramamurti and Edward Shuryak

Department of Physics and Astronomy,

Stony Brook University,

Stony Brook, NY 11794, USA

we discuss

I. INTRODUCTION

It is by now well established that high energy
heavy ion collisions, and even high multiplcity
pA and pp collisions, can be rather well
described by the relativistic hydrodynamics,
for reviews see [1–4]. These hydrodynamical
descriptions of spectra are typically followed
for several decades, from small up to transverse
momenta p? ⇠ 2 GeV . The reasons given for
this upper value di↵er from paper to paper,
and can be summarized as follows:
(i) the afterburner cascade runs out of statis-
tics;
(ii) the viscous corrections to thermal distribu-
tion in the hydro cell may become large [5]
(iii) above p? > 2 � 3 GeV the azimuthal
harmonic flows v

n

(p?) no longer follow the
characteristic hydro-based linear regime
v

n

(p?) ⇠ p?;

As we will show, the spectra change and
produce evidences for hard collisions and jet-
related phenomena several orders lower, at
pmax

? ⇠ 5 � 6 GeV . No generally agreed expla-
nation of the origin of secondaries in the inter-
mediate region of transverse momenta 2GeV <
p? < pmax

? exists at present.

(The only attempt to explain it, by a coales-
cence of jet-related and hydro-related quarks
[6], predicted certain “quark scaling” of ellip-
tic flow. Not going into ints criticism, let us
just note that our proposal is completely di↵er-
ent. In particular, we discuss secondaries com-
ing from the freezeout surface at proper time
⌧ ⇠ 20 fm/c, while all jets leave the fireball
much earlier, at ⌧ < 6 fm/c, and no coales-
cence is possible.)

Standard application of (by now, rather so-
phisticated) hydrodynamics is usually supple-

mented by very crude treatment of the final
stage of the process, known as freezeout. The
spectra are calculated by Cooper-Fry integral
over certain surface, which in practice is taken
to be an isotherm with a particular tempera-
ture T

f

.

One of the improvement we try to develop in
this work is to substitute the isotherm by an-
other surface, prescribed by a more meaningful
freezeout condition, relating the expansion rate
of matter to corresponding reaction rates.

As we will show below, the freezeout sur-
face (FOS for short) consists basically of two
distinct parts. One of them, to be called a
“lid”, is time-like surface from which most of
final particles emerge. It is characterized by a
Hubble-like flow, with transverse rapidity ap-
proximately linear with distance from the cen-
ter. This is the one which is reasonably well
reproduced by “blast wave” parameterizations
often used by experimentalists to fit the spec-
tra. As we will see, at this part of the sur-
face the temperature T and the expansion rate
@

µ

uµ are both constant, so our improved con-
dition basically leave it unchanged. Therefore,
all spectra at p? < pmax

? remain unchanged.

The second part of the freezeout surface is
the space-like “outer edge”. We will show that
at large p? > pmax

? its contribution dominates
the spectra. Furthermore, as they are very sen-
sitive to the maximal value of transverse collec-
tive flow, the precise location of the freezeout
surface becomes important. We will work out
some analytic solution, approximating this re-
gion, based on Riemann rarefaction solution.
We will further show, that while T and uµ in
this region are directly related to each other, it
is not so for T and @

µ

uµ. Therefore, the cor-
rect surface is not an isotherm, and that it in
fact includes a bit larger collective flow. With

6

flow

@
µ

uµ =
1p

(1 � c2
s

)(t2 � x2)
(17)

which is, as expected, Lorentz invariant.

V. THE “CONICAL CUP” MODEL

After critical discussion of the Gubser solu-
tion, we would like to introduce a simple model
which has properties much closer to what real-
istic hydrodynamical explosion predicts.

initial state

“the side”

time “the lid”

FIG. 4: default

The schematic shape, we call the “conical
cup”, is shown in Fig.5. It consists of the
“top” part, taken to be at constant (longitudi-
nal) proper time ⌧ = ⌧

f

, and the “outer edge”,
taken to be of conical shape, with radius lin-
early interpolating between the initial and final
radii, R

i

and R
f

. The bottom part is where the
initial conditions are to be defined: it is under-
stood to be at small but finite proper time ⌧

i

where one can start hydrodynamical descrip-
tion. We will not discuss the bottom part in
this paper anymore, and the time ⌧

i

, typically
a fraction of fm/c, is simply neglected com-
pared to ⌧

f

⇠ 17 fm/c. For justification of the
model and realistic values of its parameters the
reader should wait for later sections.

We further assume that at the top part of the
surface the transverse rapidity dependence on
r is linear, up to its maximal value

(r) = 
max

r

R
f

, (r < R
f

) (18)

Note that because ⌧ = const on the top part,
the second term in the preceding expression
vanishes.

On the outer edge we assume that the trans-
verse rapidity take the same value on the whole
wall,  = 

wall

. (Justification to fallow later.)
If so, the Bessels decouples from the integral
over the wall, up to the volume factor

V
wall

=

Z
⌧f

0
d⌧⇡R2

⌧

= (19)

As we will show later, only a part of the wall
actually corresponds to the solution with the
constant (the highest)  = 

max

, so we intro-
duce additional factor P

wall

to the outer edge
contribution. Note also, that in this case the
two terms with di↵erent Bessel functions com-
pete.

The resulting spectra for this model are shown in Fig.5, for the pions and protons. The pre-
vious studies focused on the “lid” contribution, shown by dashdotted lines, which provides good
description of the shape of the distribution up to p? ⇠ 3 GeV . Note further, that the excess seen
in the data at small p? is due to the so called “feed-down” contribution, that of the decay of mul-
tiple mesonic and baryonic resonances. It is well known and calculated in statistical hadronization
models such as [7].

The new contribution of the “outer edge” we introduced now, shown by the solid lines, is small
in the integral, of the order of a percent. However it becomes dominant at higher transverse
momenta, improving agreement for pions for p? = 2 � 5 GeV and for protons for p? = 3 � 6 GeV .
It significantly extends the description of the spectra in terms of absolute probability, by 2-3 orders
of magnitude. This is important, because it now extends right up to the momenta p? > 5�6 GeV
where the contribution from hard partonic reactions, eliminating the “nobody’s land” region in
between.
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FIG. 5: The transverse momentum spectrum dN/dydp2
?
�
(GeV )�2

�
for pions (left plot) and protons (right

plot). The points correspond to ALICE 0-5% centrality data, the dash-dotted lines show the “lid” contri-
bution, and the solid lines show that of the “outer edge”, with additional factor Pwall = 1/4.

VI. THE ISOTHERM SURFACES IN
NUMERICAL HYDRODYNAMICS

As input, we use an ensemble of hydro solu-
tions generated from Glauber-based initial con-
ditions, by MUSIC hydro code [15]. We use
smooth (Glauber-based) initial conditions and
take small impact parameter, corresponding to
0-5% centrality bin, the same as in the ALICE
data [16] to which we will be comparing them.

In Fig. 7 we show location of the points at
the isotherm T = T

f

= 100 MeV , on the r � ⌧
plane. Their distribution clearly display two
parts of the f.o. surface: (i) the “lid”; and
(ii) the “outer wall”, now connected by a rela-
tively smooth transition. Note that the former
is closer to the constant proper time surface, at
proper time ⌧

f.o.

⇡ 27 fm/c, as compared to
Gubser solution. A near-simultaneously emis-
sion of many secondaries, in a time range �⌧ ⌧
⌧
f.o.

is a phenomenon well known from the fem-
toscopy studies. Note further than the “outer
walls” have very small vertical (that is, no flow)

part at ⌧ < 3 fm/c, and then extends linearly,
from the initial edge of the nuclei at r ⇡ 7 fm
to about r ⇡ 20 fm. The slope of the edge
tells us that it moves outward with the veloc-
ity v

edge

⇡ 1/3 (not to be confused with the
collective flow velocity at the edge).

In Fig. 6(a) we show the distribution of
freezeout points in the r �  variable. Note
that it consists of a linear rise , corresponding
to the “lid” part of the surface, and the upper
“loop”, generated at the “walls”. This plot is
to be contrasted with

we show the distribution of the rapidity of
the flow y?. The light histogram correspond
to the “lid” (⌧ > 17 fm/c), and the dark one
to the “outer edge”. While the former shows a
remarkably flat distribution, in the range y? 2
[0.1, 1.1], the latter has a clear peak at y? ⇡ 1.2.
The existence of this peak is the consequence
of near-Riemann nature of the hydro solution
at the edge, according to which the values of
the temperature and rapidity must be strongly
correlated.

r r

y? ⇡ 1.4

Tf = 100MeV

In the outer edge there is analytic solution: 
The Riemann rarefaction fan

y? < 1.2
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Perturbations of 
the Big and the 
Little Bangs 
Frozen sound (from the era long 
gone) is seen on the sky, both in 
CMB and in distribution of Galaxies 

They are literally circles on the 
sky, around primordial density 
perturbations  

Initial state fluctuations  
in the positions of participant nucleons 
lead to perturbations of the Little 
Bang also  

Cylindrical (extended in z) 
at FO surface tauf=2R and 
sound velocity is ½         => 
radius is about R   => 

Radial flow enhances the 
fireball surface: move toward 
detection with v about 0.8 c 
So we should see two “horns” 

Azimutal harmonics m=O(1) 
Angle about 1 radian 



Higher flow harmonics are just deformed sounds
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Figure 2: The steps involved in the extraction of the vn for 2-3 GeV fixed-pT correlation: a) the two-
dimensional correlation function (shown for |��| < 4.75 to reduce the fluctuations near the edge), b)
the one-dimensional �� correlation function for 2 < |��| < 5 (re-binned into 100 bins), overlaid with
contributions from individual Fourier components as well as the sum, c) Fourier coe�cient vn,n vs n,
and d) vn vs n. The bottom two panels show the full dependence of vn,n and vn on ��. The v1 is not
shown since it breaks the factorization from vn,n to vn of Eq. 13. The shaded bands in c)-f) indicate the
systematic uncertainties. The range 2 < pa

T
, pb
T
< 3 GeV is chosen, since collective flow is expected to

be large in this range while the pair statistics are still high.
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Fig. 16.3 (a) Calculated two-pion distribution as a function of azimuthal angle di↵erence ��, for

viscosity-to-entropy ratios ⌘/s = 0.134, Experimental data for ultra-central collisions from LHC

collaboration ATLAS and ALICE are shown in (b) and (c)

ripheral, has been done in Ref. [199] from which we borrow Fig.16.4. The Fig.16.4

(a) shows the well known centrality dependence of the elliptic and triangular flows.

v
2

is small for central collisions due to smallness of ✏
2

, and also small at very pe-

ripheral bin because viscosity is large at small systems. Fig.16.4 (b) shows the

ln(vn/✏n), which according to the formula is the exponent. As a function of the

inverse system’s size 1/R both elliptic and triangular flows show perfectly linear
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Fig. 16.2 The perturbation is shown by small blue circle at point O: its time evolution to points

x and y is described by the Green function of linearized hydrodynamics shown by two lines.

Perturbed region – shown by grey circle – is inside the sound horizon. The sound wave e↵ect is

maximal at the intersection points of this area with the fireball boundary: �� angle is the value

at which the peak in two-body correlation function is to be found. Shifting the location of the

perturbation, from (a) to (b), result in a rather small shift in ��.

at zero �� = 0: it is generated if both observed particles come from the same

intersection point. When two observed particles come from di↵erent points, one

finds two peaks, at �� = ±2 rads. This calculation has been presented at the first

day of Annecy Quark Matter before the experimental data to be shown next were

reported: these data from from LHC collaborations ATLAS and ALICE are shown

in Fig. 16.3(b) and (c). The agreement of the shape of the angular correlation

is quite stunning, taking into account that it is just a single perturbation from a

point source, and that in order to make calculation analytic certain approximation

– conformal QGP equation of state and a bit unrealistic nuclear shape – has to be

made.

Extensive comparison of this expression with the AA data, from central to pe-

The Fate of the Initial State Fluctuations in Heavy Ion Collisions. III The Second Act of Hydrodynamics  
Pilar Staig, Edward Shuryak, Phys.Rev. C84 (2011) 044912  arXiv:1105.0676

Z
d⌧cs(⌧) ⇡ R

so the “sound circle” 
has the same size as a fireball

12

theprocess,strictlyspeakingtherearemultiplefreezeout
surfaces.Oneusuallyseparates“chemical”and“kinetic”
freezeouts,inwhichinelasticandelasticscatteringrates
areinvolved.Sincedi↵erentsecondaries(pions,K,nu-
cleons,...J/ )infacthavequitedi↵erentelasticcross
sections,the“kinetic”surfacesshouldinfactbedi↵erent
foreachspecies.

Wearenotgoingtodiscussallthosecomplicationsin
thiswork,andthinkofonlyonetypeofsecondaries,the
pions.Furthermore,wewilluseadrasticsimplification
oftenused,assumingthatthefreezeoutsurfaceisthe
isothermT(t,x)=TFO.Ifso,thesurfacecanbede-
terminedfromhydrodynamicaloutput,forexampleits
time-likepartcanbewrittenas

⌃µ=(⌧fo(x,y),x,y,⌘)(4.6)

where⌧foisthetimeatwhichthefireballreachesthe
freeze-outtemperature.TheCooper-Fryformulacon-
tainsthevectornormaltothesurfacewhichisthen

d⌃µ=�
p

�g✏µ⌫�⇢
@⌃⌫

@x

@⌃�

@y

@⌃⇢

@⌘
dxdyd⌘(4.7)

=

✓
�1,

@⌧fo
@x

,
@⌧fo
@y

,0

◆
⌧fodxdyd⌘(4.8)

Heregisthedeterminantofthemetricand✏µ⌫�⇢isthe
Levi-Civitasymbol.

Theperturbationsa↵ectthespectraintwoways.
First,theflowvelocityintheexponentiscorrectedbythe
extratermsofthefirstorderduetosound.Thesecond
e↵ect,relatedwiththefirstordertemperatureperturba-
tions(1+�),aremoresubtle.Hottermatter(positive�)
intheeventwitha“hotspot”andperturbationfromit
implyaproductionofextraentropydensity(increasesby
(1+�)3)ascomparedtothezerothorderfireball.This
meanstherewouldbeextrasecondariesproduced,asthis
entropyis“hadronized”.Byassumption,ithappenslo-
cally,delayingabitthefreezeoutaccordingtocondition

T
0

(t,x)[1+�(x,t)]=TFO(4.9)

Thusdelayisabsolutelynecessary,itprovidesextravol-
umefortheextramatterproduced,ascomparedtothe
zerothorderexplosion,sincebyassumptionthefreeze-
outtemperatureandthusthematterdensityattheFO
surfaceareheldconstant.ThedeformationoftheFO
surfacenotonlyincreasesthevolume,givingplacefor
theextraparticlesjustdiscussed,butitalsoprolongs
hydroevolution,providingabitlargerflow.

Letusnowdiscussanotherissue:atwhatpartofthe
particlespectraweshouldfocus,inordertoseebestthe
e↵ectoftheperturbation.TheCooper-Fryformulahas
ptoftheparticleintheexponent,soitistemptingto
takeitaslargeaspossible.Andindeed,allhydroe↵ects
(suchase.g.theellipticorradialflow)areenhancedby
theincreaseintheparticlemomentumpt.Therearetwo
practicallimitstoanincreaseinpt,however:
(i)Onecanbeunderstoodinsidethehydrodynamicsit-
self.Theviscoustermhasanextragradient,relativeto

theidealpartofthestresstensor.Thismeansthatthe
relativeroleofviscouscorrectionswillgrowwithpt,till
atsomepointitwillnolongerbesmallascomparedto
idealterm.Obviouslyatsuchpthydrodynamicsshould
besubstitutedbysomeothertool,e.g.somekineticthe-
orydescription.
(ii)Inrealcollisionssomesecondariesoriginatefromhard
scatteringandsubsequentjets.Inspiteofsignificantjet
quenching,atlargeenoughptthehardcomponentofthe
spectrasupersedesthehydrodynamicalspectra.Obvi-
ously,beyondthispointoneloosesabilitytofollowthe
hydrodynamicalcomponent.

Thetransitionbetweenthehydrodynamicpartofthe
spectrumandthehardQCDtailhasbeendetermined
tobebetween4-5GeV[23,24]so,abitconservatively,
wewillconsiderpt=1GeV,asaregionwellinsidethe
hydrodynamicaldomain.Evenatthispt,itsratiotothe
kineticFOtemperatureisalargenumberpt/Tf=O(10),
whichcanbetreatedasalargeparameteroftheproblem,
residingintheexponent.

Letusworkoutthefirst-ordercorrectionsappearing
fromtheperturbation.Therearetwoe↵ects,onefrom
theextramatterT=Tf+�Tandonefromextramotion
ofthematterinthesoundwave.Thelattercontribution
comessimplyfromaddingtheperturbationtotheveloc-
ity,

uµ!uµ+�uµ(4.10)

�uµistheperturbation,writtenin(3.38)asû
1

times⌧.
Thee↵ectduetotheextramatterisincludedwhen
calculatingthefreeze-outsurface:

Tfo=Tb(⌧,r)+�T(⌧,r,�)(4.11)

where�T=T̂
1

/⌧,withT̂
1

from(3.37).Theequation
(4.11)issolvedfor⌧(r,�),andtheresultfortheinviscid
caseispresentedinFig.5.Sincethecontributionfromthe

FIG.5:(Coloronline)Freeze-outsurface⌧(x,y)forthein-
viscidcase.

perturbationissmall,wewrite⌧(r,�)=⌧b(r)+�⌧(r,�)
andconsidertermsuptofirstorderin�⌧(r,�).Bythis
wemeanthattheexponentwillbeapproximatedby

pµuµ(⌧b+�⌧)
Tf

⇡pµubµ(⌧b)
Tf

+
1
Tf

d(pµubµ(⌧b+�⌧))
d(�⌧)

|�⌧=0

�⌧

+
pµ�uµ(⌧b)

Tf
(4.12)
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the spectrum of azimuthal harmonics 
show the effect of viscous damping 

much more clearly 
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plotted width. (This is, of course, well known
from numerical studies in the literature during
the last several years.) For the pA and pp cases
one can see a di↵erence between ideal and vis-
cous , as we show in Figs. 3 through the re-
duced temperature dependence T = T̂ /t at cer-
tain positions. The viscous e↵ect is maximal
at early times, and then the viscous and ideal
curves meet. As expected, the viscous e↵ects
are very small at the fireball center r = 0, and
become much more noticeable at its edge, see
the r = 3 curve. In fact in this case the vis-
cosity completely stops the cooling (decrease of
the temperature) for a significant time, thus de-
laying the freezeout.

The main conclusion of this section is that
a “realistic” viscosity of the sQGP is so small,
that it provides a rather modest correction to
the radial flow, even for the pA and pp collisions
under consideration.

C. High angular harmonics

If the e↵ects of order l/R are not negligible,
they should be included. Keeping the first or-
der gradient of the velocities leads to the cel-
ebrated Navier-Stokes hydrodynamics. As one
includes the second order corrections, one get
other known approximations such as the Israel-
Stewart approximation. Recently, using the
AdS/CFT approach about a dozen of lowest or-
der coe�cients in the gradient expansion were
identified with alternating signs. An approxi-
mate PADE-like re-summation of these terms
was suggested by Lublinsky and Shuryak [20].
We will discuss the role of these higher order
gradient corrections in section III.

The e↵ects of viscosity are likely to damp
more the higher angular flow moments, as first
discussed by Staig and Shuryak [21] and recenty
applied to wast range of RHIC data [22] . The
“viscous filter” for the amplitude of a sound
perturbation with the wave vector k is

Pk =
�Tµ⌫(t, k)
�Tµ⌫(0, k)

= exp
✓
�2

3
⌘

s

k2t

T

◆
(21)

Since the scaling of the freeze out time is linear
in R or tf ⇡ 2R, and the wave vector k corre-
sponds to the fireball circumference which is m
times the wavelength, then

> > 

(17)(17)
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(10)(10)

t
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6

plot subs r = 3, Tpp033 / t 4 , subs r = 3, Tpp000 / t 4 , subs r = 3, TpA033 / t 4 ,

subs r = 3, TpA000 / t 4 , t = 0.5 ..4, color = black, black, red, red , linestyle = dash,

solid, dash, solid , axes = boxed, thickness = 3, axesfont = Times, bold, 15 , labelfont

= Times, bold, 15
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t
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plot subs r = 1, Tpp033 / t , subs r = 1, Tpp000 / t , subs r = 1, TpA033 / t , subs r = 1,
TpA000 / t , t = 0.2 ..2, color = black, black, red, red , linestyle = dash, solid, dash, solid ,
axes = boxed, thickness = 3, axesfont = Times, bold, 15 , labelfont = Times, bold, 15 ;FIG. 3: (color online) The temperature versus di-

mensionless time t, for ideal hydrodynamics (solid)
and viscous hydrodynamics with ⌘/s = 0.132
(dashed) lines. The upper pair of (red) curves are
for pp, the lower (black) ones for pA collisions. The
upper plot is for r = 1, the lower plot for r = 3.

2⇡R = m
2⇡

k
(22)

Inserting these values in (21) yields

Pm = exp

�m2 4

3

⇣⌘

s

⌘ ✓
1

TR

◆�
(23)
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FIG. 1. (a)-(d) vn/εn vs. n for charged hadrons for several pT selections in 20-30% central Pb+Pb collisions at
√

sNN = 2.76

TeV; (e) β
′

vs. pT for the same centrality selection. The vn data are taken from Refs. [6, 30]; the dashed and dotted curves
represent fits (see text).

The viscous corrections to vn implied in Eq. 3, do not74

indicate an explicit pT -dependence. However, a finite75

viscosity in the plasma results in an asymmetry in the76

energy-momentum tensor which manifests as a correction77

to the local particle distribution (f) at freeze-out [23];78

f = f0 + δf(p̃T ), p̃T =
pT
T

, (4)

where f0 is the equilibrium distribution and δf(p̃T ) is79

its first order correction. The latter leads to the pT -80

dependent viscous coefficient β
′

(p̃T ) ∝ β/pαT , where the81

magnitude of α is related to the relaxation time τR(pT ).82

Equations 3 and 4 suggest that for a given central-83

ity, the viscous corrections to the flow harmonics vn(pT ),84

grow exponentially as n2;85

vn(pT )

εn
∝ exp

(

−β
′

n2
)

, (5)

and the ratios (vn(pT )/v2(pT ))n≥3 can be expressed as;86

vn(pT )

v2(pT )
=
εn
ε2

exp
(

−β
′

(n2 − 4)
)

, (6)

indicating that they only depend on the eccentricity ra-87

tios and the relative viscous correction factors. Note as88

well that Eq. 6 shows that the higher order harmonics89

vn,n≥3, can all be expressed in terms of the lower order90

harmonic v2, as has been observed recently [6, 32].91

If validated, the acoustic dissipative patterns summa-92

rized in Eqs. 5 and 6, indicate that estimates for α, β93

and εn/ε2 can be extracted directly from the data. Here,94

we perform validation tests for these dissipative patterns95

with an eye toward more stringent constraints for τR, η/s96

and the distinction between different eccentricity models.97

The data employed in our analysis are taken from mea-98

surements by the ATLAS collaboration for Pb+Pb colli-99

sions at
√
sNN = 2.76 TeV [6, 30]. These measurements100

exploit the event plane analysis method (c.f. Eq. 1),101

as well as the two-particle ∆φ correlation technique (c.f.102

Eq. 2) to obtain robust values of vn(pT , cent). We di-103104

vide these values by εn(cent) and plot them as a function105

of n, to make an initial test for viscous damping com-106

patible with sound propagation in the plasma produced107

in these collisions. Monte Carlo Glauber (MC-Glauber)108

simulations were used to compute εn(cent) from the two-109

dimensional profile of the density of sources in the trans-110

verse plane ρs(r⊥), with weight ω(r⊥) = r⊥
n [33].111

The open circles in Figs. 1 (a)-(d) show representa-112

tive examples of vn/εn vs. n for several pT cuts, for the113

20-30% centrality selection. The dashed curves which114

indicate fits to the data with Eq. 5, confirm the ex-115

pected exponential growth of the viscous corrections to116

vn, as n2. The pT -dependent viscous coefficients β
′

(p̃T )117

obtained from these fits, are summarized in Fig. 1 (e);118

they show the expected 1/pαT dependence attributable to119

data from ATLAS coll

The spectrum of  
cosmological T 

fluctuations, from the CMB  
data by Plank coll

m

the sounds of the 
Little and Big Bang



The acoustic damping formula works well, even for nonlinear terms 

Acoustic scaling of linear and mode-coupled anisotropic flow; implications for precision extraction of the specific shear viscosity  
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pressed as [10, 18]:

χmc
4,(2,2) =

Re⟨V4(V ∗
2 )

2⟩
⟨v42⟩

, χmc
5,(2,3) =

Re⟨V5V ∗
2 V

∗
3 ⟩

⟨v22v23⟩
,

χmc
6,(3,3) =

Re⟨V6(V ∗
3 )

2⟩
⟨v43⟩

, χmc
6,(2,2,2) =

Re⟨V6(V ∗
2 )

3⟩
⟨v62⟩

,

χmc
7,(2,2,3) =

Re⟨V7(V ∗
2 )

2V ∗
3 ⟩

⟨v42v23⟩
. (7)

For a given pT and centrality selection, the magnitudes
of the mode-coupled flow vectors can also be expressed
in terms of the correlations of Vn with Ψ2 and Ψ3 to give
[18, 30]:

vmc
4,(2,2) =

⟨v4v22 cos(4Ψ4 − 4Ψ2)⟩
√

⟨v42⟩
≈ ⟨v4 cos(4Ψ4 − 4Ψ2)⟩,

vmc
5,(3,2) =

⟨v5v3v2 cos(5Ψ5 − 3Ψ3 − 2Ψ2)⟩
√

⟨v23 v22⟩
≈ ⟨v5 cos(5Ψ5 − 3Ψ3 − 2Ψ2)⟩,

vmc
6,(2,2,2) =

⟨v6 v32 cos(6Ψ6 − 6Ψ2)⟩
√

⟨v62⟩
≈ ⟨v6 cos(6Ψ6 − 6Ψ2)⟩,

vmc
6,(3,3) =

⟨v6v23 cos(6Ψ6 − 6Ψ3)⟩
√

⟨v43⟩
≈ ⟨v6 cos(6Ψ6 − 6Ψ3)⟩,

where the average in the numerator is an average over
particles for a given pT selection, for all the events in the
chosen centrality range, and the average in the denomina-
tor is an average over events for the centrality selection.
These expressions point to the important role of event-
plane correlations for mode-coupling. It is also straight
forward to use Eqs. 3 - 7 to evaluate the magnitude of
the higher-order linear harmonic response:

vL4 =
√

v 2
4 − v 2

4,(2,2), vL5 =
√

v 2
5 − v 2

5,(3,2). (8)

Analogous to anisotropic flow, the complex eccentricity
coefficients defined in Eq. 2, can be used to determine the
higher-order mixed-mode eccentricities:

εn =

√

〈

|En|2
〉

, εmc
4,(2,2) =

√

⟨ϵ42⟩,

εmc
5,(2,3) =

√

⟨ϵ22ϵ23⟩, εmc
6,(3,3) =

√

⟨ϵ43⟩,

εmc
6,(2,2,2) =

√

⟨ϵ62⟩, εmc
7,(2,2,3) =

√

⟨ϵ42ϵ23⟩. (9)

Recently, it has been argued that the linear response con-
tribution to higher-order flow, should be linearly propor-
tional to the cumulant-defined eccentricities E ′

n instead
of En [10]:

E ′

2 ≡ ϵ2e
i2Φ2 = E2, E ′

3 ≡ ϵ3e
i3Φ3 = E3,

E ′
4 ≡ ϵ′4e

i4Φ′

4 ≡ −
⟨z4⟩ − 3⟨z2⟩2

⟨r4⟩
= E4 +

3⟨r2⟩2

⟨r4⟩
E2
2 ,

E ′

5 ≡ ϵ′5e
i5Φ′

5 ≡ −
⟨z5⟩ − 10⟨z2⟩⟨z3⟩

⟨r5⟩
= E5 +

10⟨r2⟩⟨r3⟩
⟨r5⟩

E2E3,

(10)

where z ≡ x+ iy = reiφ. An important advantage of this
definition, is that it allows the subtraction of contribu-
tions from lower order z correlations.
In analogy to elliptic and triangular flow, vLn ∝ ε

′

n,
vmc
n,(i,j) ∝ εmc

n,(i,j) and vmc
n,(i,i,j) ∝ εmc

n,(i,i,j). The specific

shear viscosity also attenuates vLn/ε
′

n, v
mc
n,(i,j)/ε

mc
n,(i,j) and

vmc
n,(i,i,j)/ε

mc
n,(i,i,j). For measurements at a given mean

transverse momentum ⟨pT⟩, and centrality cent, this vis-
cous damping can be expressed via an acoustic ansatz
[24, 31–33] as:

vLn
ε′

n
∝ exp

(

−n2β
1

RT

)

, (11)

vmc
n,(i,j)

εmc
n,(i,j)

∝ exp

(

−(i2 + j2)β
1

RT

)

,

vmc
n,(i,i,j)

εmc
n,(i,i,j)

∝ exp

(

−(2i2 + j2)β
1

RT

)

, (12)

where β ∝ η/s, T is the temperature and R characterizes
the geometric size of the collision zone. For a given cen-

trality selection, the dimensionless size RT ∝ N1/3
ch , where

Nch is the charged particle multiplicity density in one unit
of pseudorapidity [34].
Equations 11 and 12 suggest characteristic lin-

ear dependencies for ln(vLn/ε
′

n), ln(vmc
n,(i,j)/ε

mc
n,(i,j)) and

ln(vmc
n,(i,i,j)/ε

mc
n,(i,i,j)) on ⟨Nch⟩−1/3 (respectively), with

slopes that reflect specific quadratic viscous attenu-
ation prefactors for β; these combined features are
termed acoustic scaling. The prefactors, reflected in
the slopes of ln(vLn/ε

′

n) vs. (Nch)−1/3, are not only ex-
pected to increase as n2, but should be approximately
2-3 times larger than those for ln(vmc

n,(i,j)/ε
mc
n,(i,j)) and

ln(vmc
n,(i,i,j)/ε

mc
n,(i,i,j)) vs. (Nch)−1/3 (respectively) since

(i2 + j2) < n2.
Independent estimates of β, involving very differ-

ent eccentricities, can also be obtained from the lin-
ear and mode-coupled harmonics. For example, the
slope of the double ratio ln[(vmc

5,(2,3)/ε
mc
5,(2,3))/(v2/ε2)] vs.

(Nch)−1/3, is expected to be similar to that for ln(v3/ε3)
vs. (Nch)−1/3 for a given ⟨pT⟩. Thus, the validation
of simultaneous acoustic scaling of the linear and mode-
coupled harmonics to give a single estimate of β ∝ η/s,
could provide a powerful constraint for initial-state ec-
centricity models and precision extraction of η/s.
In this letter, we use recent measurements of the lin-

ear and mode-coupled harmonics in Pb+Pb collisions at√
sNN = 2.76 TeV, to explore validation tests for si-

multaneous acoustic scaling of vLn/ε
′

n, v
mc
n,(i,j)/ε

mc
n,(i,j) and

vmc
n,(i,i,j)/ε

mc
n,(i,i,j), with an eye towards the development of

new experimental constraints which could significantly
reduce the large eccentricity-driven uncertainties associ-
ated with current extractions of η/s.
The data employed in this work are taken from the

published flow measurements for Pb+Pb collisions at
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pressed as [10, 18]:

χmc
4,(2,2) =

Re⟨V4(V ∗
2 )

2⟩
⟨v42⟩

, χmc
5,(2,3) =

Re⟨V5V ∗
2 V

∗
3 ⟩

⟨v22v23⟩
,

χmc
6,(3,3) =

Re⟨V6(V ∗
3 )

2⟩
⟨v43⟩

, χmc
6,(2,2,2) =

Re⟨V6(V ∗
2 )

3⟩
⟨v62⟩

,

χmc
7,(2,2,3) =

Re⟨V7(V ∗
2 )

2V ∗
3 ⟩

⟨v42v23⟩
. (7)

For a given pT and centrality selection, the magnitudes
of the mode-coupled flow vectors can also be expressed
in terms of the correlations of Vn with Ψ2 and Ψ3 to give
[18, 30]:

vmc
4,(2,2) =

⟨v4v22 cos(4Ψ4 − 4Ψ2)⟩
√

⟨v42⟩
≈ ⟨v4 cos(4Ψ4 − 4Ψ2)⟩,

vmc
5,(3,2) =

⟨v5v3v2 cos(5Ψ5 − 3Ψ3 − 2Ψ2)⟩
√

⟨v23 v22⟩
≈ ⟨v5 cos(5Ψ5 − 3Ψ3 − 2Ψ2)⟩,

vmc
6,(2,2,2) =

⟨v6 v32 cos(6Ψ6 − 6Ψ2)⟩
√

⟨v62⟩
≈ ⟨v6 cos(6Ψ6 − 6Ψ2)⟩,

vmc
6,(3,3) =

⟨v6v23 cos(6Ψ6 − 6Ψ3)⟩
√

⟨v43⟩
≈ ⟨v6 cos(6Ψ6 − 6Ψ3)⟩,

where the average in the numerator is an average over
particles for a given pT selection, for all the events in the
chosen centrality range, and the average in the denomina-
tor is an average over events for the centrality selection.
These expressions point to the important role of event-
plane correlations for mode-coupling. It is also straight
forward to use Eqs. 3 - 7 to evaluate the magnitude of
the higher-order linear harmonic response:

vL4 =
√

v 2
4 − v 2

4,(2,2), vL5 =
√

v 2
5 − v 2

5,(3,2). (8)

Analogous to anisotropic flow, the complex eccentricity
coefficients defined in Eq. 2, can be used to determine the
higher-order mixed-mode eccentricities:

εn =

√

〈

|En|2
〉

, εmc
4,(2,2) =

√

⟨ϵ42⟩,

εmc
5,(2,3) =

√

⟨ϵ22ϵ23⟩, εmc
6,(3,3) =

√

⟨ϵ43⟩,

εmc
6,(2,2,2) =

√

⟨ϵ62⟩, εmc
7,(2,2,3) =

√

⟨ϵ42ϵ23⟩. (9)

Recently, it has been argued that the linear response con-
tribution to higher-order flow, should be linearly propor-
tional to the cumulant-defined eccentricities E ′

n instead
of En [10]:

E ′

2 ≡ ϵ2e
i2Φ2 = E2, E ′

3 ≡ ϵ3e
i3Φ3 = E3,

E ′
4 ≡ ϵ′4e

i4Φ′

4 ≡ −
⟨z4⟩ − 3⟨z2⟩2

⟨r4⟩
= E4 +

3⟨r2⟩2

⟨r4⟩
E2
2 ,

E ′

5 ≡ ϵ′5e
i5Φ′

5 ≡ −
⟨z5⟩ − 10⟨z2⟩⟨z3⟩

⟨r5⟩
= E5 +

10⟨r2⟩⟨r3⟩
⟨r5⟩

E2E3,

(10)

where z ≡ x+ iy = reiφ. An important advantage of this
definition, is that it allows the subtraction of contribu-
tions from lower order z correlations.
In analogy to elliptic and triangular flow, vLn ∝ ε

′

n,
vmc
n,(i,j) ∝ εmc

n,(i,j) and vmc
n,(i,i,j) ∝ εmc

n,(i,i,j). The specific

shear viscosity also attenuates vLn/ε
′

n, v
mc
n,(i,j)/ε

mc
n,(i,j) and

vmc
n,(i,i,j)/ε

mc
n,(i,i,j). For measurements at a given mean

transverse momentum ⟨pT⟩, and centrality cent, this vis-
cous damping can be expressed via an acoustic ansatz
[24, 31–33] as:

vLn
ε′

n
∝ exp

(

−n2β
1

RT

)

, (11)

vmc
n,(i,j)

εmc
n,(i,j)

∝ exp

(

−(i2 + j2)β
1

RT

)

,

vmc
n,(i,i,j)

εmc
n,(i,i,j)

∝ exp

(

−(2i2 + j2)β
1

RT

)

, (12)

where β ∝ η/s, T is the temperature and R characterizes
the geometric size of the collision zone. For a given cen-

trality selection, the dimensionless size RT ∝ N1/3
ch , where

Nch is the charged particle multiplicity density in one unit
of pseudorapidity [34].
Equations 11 and 12 suggest characteristic lin-

ear dependencies for ln(vLn/ε
′

n), ln(vmc
n,(i,j)/ε

mc
n,(i,j)) and

ln(vmc
n,(i,i,j)/ε

mc
n,(i,i,j)) on ⟨Nch⟩−1/3 (respectively), with

slopes that reflect specific quadratic viscous attenu-
ation prefactors for β; these combined features are
termed acoustic scaling. The prefactors, reflected in
the slopes of ln(vLn/ε

′

n) vs. (Nch)−1/3, are not only ex-
pected to increase as n2, but should be approximately
2-3 times larger than those for ln(vmc

n,(i,j)/ε
mc
n,(i,j)) and

ln(vmc
n,(i,i,j)/ε

mc
n,(i,i,j)) vs. (Nch)−1/3 (respectively) since

(i2 + j2) < n2.
Independent estimates of β, involving very differ-

ent eccentricities, can also be obtained from the lin-
ear and mode-coupled harmonics. For example, the
slope of the double ratio ln[(vmc

5,(2,3)/ε
mc
5,(2,3))/(v2/ε2)] vs.

(Nch)−1/3, is expected to be similar to that for ln(v3/ε3)
vs. (Nch)−1/3 for a given ⟨pT⟩. Thus, the validation
of simultaneous acoustic scaling of the linear and mode-
coupled harmonics to give a single estimate of β ∝ η/s,
could provide a powerful constraint for initial-state ec-
centricity models and precision extraction of η/s.
In this letter, we use recent measurements of the lin-

ear and mode-coupled harmonics in Pb+Pb collisions at√
sNN = 2.76 TeV, to explore validation tests for si-

multaneous acoustic scaling of vLn/ε
′

n, v
mc
n,(i,j)/ε

mc
n,(i,j) and

vmc
n,(i,i,j)/ε

mc
n,(i,i,j), with an eye towards the development of

new experimental constraints which could significantly
reduce the large eccentricity-driven uncertainties associ-
ated with current extractions of η/s.
The data employed in this work are taken from the

published flow measurements for Pb+Pb collisions at

3

FIG. 1. Comparison of (vL
n/ε

′

n) vs. (Nch)
−1/3 for the linear

harmonics (left panel), and vmc
n,(i,j)/ε

mc
n,(i,j) and vmc

n,(i,i,j)/ε
mc
n,(i,i,j)

vs. (Nch)
−1/3 (respectively) for the nonlinear mode-coupled

harmonics, for Pb+Pb collisions at at
√
sNN = 2.76 TeV.

The lines represent a simultaneous exponential fit to the data,
following Eqs. 11 and 12. The ALICE data are taken from
Refs. [35, 36].

√
sNN = 2.76 TeV by the ALICE [35, 36] and ATLAS

[22] collaborations. The ALICE centrality dependent pT-
integrated measurements were performed for the harmon-
ics n = 2, 3, 4, 5, 6, for charged particles with pseudora-
pidity difference |∆η| < 0.8 and 0.2 < pT < 5.0 GeV/c.
Both the linear and mode-coupled flow coefficients were
obtained directly via a two sub-events multiparticle cor-
relation method. The corresponding ATLAS measure-
ments were performed for n = 2, 3, 4, 5 for particles with
2 < |∆η| < 5 and for several pT selections spanning the
range 0.5 < pT < 4.0 GeV/c, with the two-particle corre-
lation method supplemented with event-shape selection
[22]. The systematic uncertainties, which are included in
our scaling analyses, are reported in Refs. [22, 35, 36] for
both sets of measurements.

The requisite cumulant-defined eccentricities were cal-
culated following the procedure outlined in Eqs. 2, 9
and 10 with the aid of a Monte Carlo quark-Glauber
model (MC-qGlauber) with fluctuating initial conditions
[37]. The model, which is based on the commonly used
MC-Glauber model [38], was used to compute the num-
ber of quark participants Nqpart(cent), and ε

′

n(cent) and
εmc
n (cent) from the two-dimensional profile of the den-
sity of sources in the transverse plane ρs(r⊥) [10, 14, 37].
The model takes account of the finite size of the nucleon,
the wounding profile of the nucleon, the distribution of
quarks inside the nucleon and quark cross sections which
reproduce the NN inelastic cross section at

√
sNN = 2.76

TeV. A systematic uncertainty of 2-5% was estimated for
the eccentricities from variations of the model parame-
ters.

The centrality dependent multiplicity densities used

FIG. 2. Same as Fig. 1 but for ATLAS data [22]; the β-
prefactors n2 and (i2 + j2) are indicated in the figure.

to evaluate the dimensionless size RT ∝ N1/3
ch , are ob-

tained from ALICE [39] and ATLAS [40] multiplicity
density measurements. Validation tests for acoustic scal-
ing were performed by plotting vLn/ε

′

n, v
mc
n,(i,j)/ε

mc
n,(i,j) and

vmc
n,(i,i,j)/ε

mc
n,(i,i,j) vs. ⟨Nch⟩−1/3 respectively, to test for

the expected patterns of exponential viscous attenuation,
and the relative viscous attenuation β-prefactors indi-
cated in Eqs. 11 and 12.
Figures 1 and 2 show the plots for vLn/ε

′

n, v
mc
n,(i,j)/ε

mc
n,(i,j)

and vmc
n,(i,i,j)/ε

mc
n,(i,i,j) vs. (Nch)−1/3 (respectively), for the

ALICE (Fig. 1) and ATLAS (Fig. 2) data sets. They
indicate the telltale acoustic scaling patterns of a charac-
teristic linear dependence of ln(vLn/ε

′

n), ln(v
mc
n,(i,j)/ε

mc
n,(i,j))

and ln(vmc
n,(i,i,j)/ε

mc
n,(i,i,j)) on (Nch)−1/3 (respectively), with

slope factors which strongly depend on the harmonic
number n and the values of the mode-coupled harmonics
i, j and i, i, j. Note that the slopes for the linear harmon-
ics (left panel in each figure) show a much steeper de-
pendence on (Nch)−1/3 than those for the mode-coupled
harmonics (right panel in each figure), as expected from
Eqs. 11 and 12. The expected slope hierarchy for both
the linear and mode-coupled results are also apparent in
both figures. The qualitative similarities between the re-
sults shown in Figs. 1 and 2 suggest that the respective
methods employed by ATLAS and ALICE for extraction
of the flow coefficients, are complementary.
The lines shown in Figs. 1 and 2 represent the results

from fits to the data following Eqs. 11 and 12. They
indicate that, within an uncertainty of ∼ 2 − 12%, a
single slope value β, can account for the wealth of the
linear and mode-coupled measurements in each data set.
That is, they confirm the quadratic β prefactors of 4, 9,
16 and 25 for vLn (n=2,3,4 and 5) and 8, 13, 18 and 12
for vmc

4,(2,2), v
mc
5,(2,3), v

mc
6,(3,3) and vmc

6,(2,2,2) respectively. To
estimate the fit uncertainty for each data set, the slope
for the fit to v2/ε2 was first obtained, and then used
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behavior. Further issues – the n2 dependence as well as linear dependences of

the log(vm/✏m) on viscosity value – are also very well reproduced, see Fig.16.4.

Note that this expression works all the way to rather peripheral AA collisions with

R ⇠ 1 fm and multiplicities comparable to those in the highest pA binds. It also

seem to work till the largest n so far measured.

So, the acoustic damping provides correct systematics of the harmonic strength.

This increases our confidence that – in spite of somewhat di↵erent geometry – the

perturbations observed are actually just a form of a sound waves.

the observed hadrons (like microwave cosmic photons) are seen at the moment of

their last interaction, or as we call it technical, at their freeze-out stage. The next

comparison I would like to make here deals with the issue of fluctuations. Very

4

FIG. 3. (a) v2,3 vs. Npart for pT = 1 � 2 GeV/c: (b) ln(vn/�n) vs. 1/R̄ for the data shown in (a): (c - e) centrality dependence
of the �n/�2 ratios extracted from fits to (vn(pT )/v2(pT ))n�3 with Eq. 6; �n/�2 ratios for the MC-Glauber [33, 37] and MC-KLN
[34] models are also shown: (f) extracted values of � vs. centrality: (g) extracted values of � vs. centrality (see text).

FIG. 4. (a) ln(vn/�n) vs. n2 from viscous hydrodynamical calculations for three values of specific shear viscosity as indicated.
(b) ln(vn/�n) vs. n2 for Pb+Pb data. The pT -integrated vn results in (a) and (b) are for 0.1% central Pb+Pb collisions at�

sNN = 2.76 TeV [38]; the curves are linear fits. (c) � vs. 4��/s extracted from the curves shown in (a) and (b).

within errors, the full data set for vn(pT , cent) can be un-187

derstood in terms of the eccentricity moments coupled to188

a single (average) value for ↵ and � (respectively). This189

observation is compatible with recent viscous hydrody-190

namical calculations which have been successful in repro-191

ducing vn(pT , cent) measurements with a single �f(p̃T )192

ansatz and an average value of ⌘/s [26, 27]. Therefore,193

these values of ↵ and � should provide an important set194

of constraints for detailed model calculations.195

To demonstrate their utility, we have used the results196

from recent viscous hydrodynamical calculations [38] to197

calibrate � and make an estimate of ⌘/s. This is illus-198

trated in Fig. 4. The pT -integrated vn results from vis-199

cous hydrodynamical calculations for three separate ⌘/s200

values, for 0.1% central Pb+Pb collisions are shown in201

Fig. 4(a). They indicate the expected linear dependence202

Fig. 16.4 (a) Atlas data for angular harmonics represented by ln(vn/✏n) vs. harmonic number

squared n2 from viscous hydrodynamical calculations for three values of specific shear viscosity

as indicated. (b) ln(vn/✏n) vs. n2 for Pb+Pb data. The p? -integrated vn results in (a) and (b)

are from ATLAS 0.1% central Pb+Pb collisions at sNN = 2.76 TeV; the curves are linear fits. (c)

exponent vs. viscosity-to-entropy ratio 4⇡/s for curves shown in (a) and (b).
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Fig. 2. Elliptic (v2) and triangular (v3) anisotropies as a function of pT for inclusive charged hadrons at midrapidity in 0-5% central
d+Au (circles) and 3He+Au collisions (squares) at √sNN=200 GeV. Smaller values of v3 are observed in the d+Au system. Compar-
isons to hydrodynamic calculations with and without a preequilibrium flow component [8, 9] are shown in the middle and right panels.
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Fig. 3. Elliptic anisotropies (v2(pT )) for inclusive charged hadrons at midrapidity in central d+Au collisions at √sNN=200, 62.4,
39, and 19.6 GeV shown in panels (a) through (d). Top: data are compared to hydrodynamics predictions [8, 9]. Bottom: Data are
compared to AMPT calculations using the parton plane or the event plane reconstructed in the detector acceptance.
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Fig. 2. Elliptic (v2) and triangular (v3) anisotropies as a function of pT for inclusive charged hadrons at midrapidity in 0-5% central
d+Au (circles) and 3He+Au collisions (squares) at √sNN=200 GeV. Smaller values of v3 are observed in the d+Au system. Compar-
isons to hydrodynamic calculations with and without a preequilibrium flow component [8, 9] are shown in the middle and right panels.
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Fig. 3. Elliptic anisotropies (v2(pT )) for inclusive charged hadrons at midrapidity in central d+Au collisions at √sNN=200, 62.4,
39, and 19.6 GeV shown in panels (a) through (d). Top: data are compared to hydrodynamics predictions [8, 9]. Bottom: Data are
compared to AMPT calculations using the parton plane or the event plane reconstructed in the detector acceptance.
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Can 1fm-size fireball in pA and pp be hydrodynamical?

If one naively estimate viscosity times the gradient,  
it is comparable to the local terms

But re-summation of higher gradients change it to smaller effective value 
Helping to explain why hydro works for small systems 

Improved Hydrodynamics from the AdS/CFT  
Michael Lublinsky, Edward Shuryak (SUNY, Stony Brook). May 2009. 25 pp.  
Published in Phys.Rev. D80 (2009) 065026 , arXiv:0905.4069 

This ansatz has three pure imaginary poles and it reproduces exactly eight first coefficients in the

expansion (3.1).

d1 = 0.736 , a1 = 0.72731 , b1 = 0.3263 d2 = 2.1 , a2 = 0.10618 , b2 = 0.3042 ,

d3 = −2.1016 , a3 = 0.10620 , b3 = 0.3038 .

The resummed viscosity function is plotted in Fig. 4. This model could be further improved by
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Figure 4: Viscosity function (divided by η0): the model

accounting for the asymptotic behavior (3.10) as well as for information about quasinormal modes of

the scalar channel. The second and third poles practically cancel each other. Despite the fact that it

does not accurately reproduce the expansion, it turns out to be a very good approximation to retain

only one pole, similarly to IS but with three-momentum dependence.

ηmodel 2 =
η0

1 − η2,0 k2 − i w η0,1
(4.3)

Within about 10% accuracy (and in some regions with much better one) the second model is equiva-

lent to the first one. Since the entire effect of momenta-dependence is not expected to be very large,

the second model should be more than sufficient for any phenomenological applications. We note

that the group velocity for the sound mode computed within this model is always smaller than one,

confirming causality of the model.

The viscosity function can be Fourier transformed into the memory function

D(x, t) =

∫

dω d3k e−iω t+ i k x η(k2,ω) (4.4)

which leads to the following expression for the dissipation tensor Π:

Πµν = − 2

∫ t

0
dt′

∫

d3x′D(x− x′, t− t′) ∇′µ uν(x′, t′) (4.5)

Performing the Fourier transform explicitly we obtain

Dmodel 2(x, t) =

∫

dω d3k e−iω t+ i k x ηmodel 2(k
2,ω) =

1

2
√
2

η0
η0,1

(

− η0,1
η2,0 t

)3/2

e− t / η0,1 ex2 η0,1 / (η2,0 t)

(4.6)

We remind the reader that η2,0 is negative.
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Fluid dynamics of out of equilibrium boost invariant plasmas  
Jean-Paul Blaizot (IPhT, Saclay), Li Yan (McGill U.). Jul 16, 2018. 4 pp.  
Conference: C18-05-14.5  
e-Print: arXiv:1807.06104

Using renormalization group 
Similar viscosity renormalization 
Was found by Blaizot and Li Yan
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Relation between monopoles and 
semiclassical theory 

(instantons, instanton-dyons)



Why is QGP so unusual? 
Short answer: because it is in a strongly coupled regime. 

(unusually small mean free path)

A gift from string theory community, 
AdS/CFT correspondence 

It lead to many beautiful physics 
Ideas, uniting general relativity, 

strings, strongly coupled  
Plasmas in equilibrium and 

In out-of-equilibrium settings, 
All of which were “solved from first principles” 

It is a true Disneyworld for theorists 

Unfortunately, it would be hard on non-experts 
And perhaps require a colloquium 

of its own



Why is QGP so unusual? 
Short answer: because it is in a strongly coupled regime. 

(unusually small mean free path)

A gift from string theory community, 
AdS/CFT correspondence 

It lead to many beautiful physics 
Ideas, uniting general relativity, 

strings, strongly coupled  
Plasmas in equilibrium and 

In out-of-equilibrium settings, 
All of which were “solved from first principles” 

It is a true Disneyworld for theorists 

Unfortunately, it would be hard on non-experts 
And perhaps require a colloquium 

of its own

I will focus instead  on another duality 
The electric-magnetic one 

Which is based on the  
Renormalization group flow  
And magnetic monopoles: 

QGP is a dual plasma  
which has both 

electrically and magnetically  
charged particles. 

Their interactions are very curious

There is another form of the theory of nonperturbative phenomena 
The semiclassical theory based on instanton-dyons 

Which is very successful but will not be discussed in this talk



One can  start in the theory  
in which there is a complete theoretical control 

on both and compare two approaches directly

N=4 extended supersymmetry
with Higgled scalar

compactified on a circle

N.Dorey and  A.Parnachev
JHEP 0108, 59 (2001) 

hep-th/0011202] 

Partition function calculated in
terms of monopoles 

Partition function calculated in
terms of instanton-dyons 

Configurations are obviously very different
Zs also look different, 

and yet they are related 
by the Poisson summation formula

and thus are the same!!!



Is there any relation between  
the semiclassical instanton-dyons 

and QCD monopoles?

Are there monopoles in the quark-gluon plasma?

Adith Ramamurti,⇤ Edward Shuryak,† and Ismail Zahed‡

Department of Physics and Astronomy,

Stony Brook University,

Stony Brook, NY 11794, USA

(Dated: March 1, 2018)

Monopole-like objects have been identified in multiple lattice studies, and there is now a significant
amount of literature on their importance in phenomenology. Some analytic indications of their role,
however, are still missing. The ’t Hooft-Polyakov monopoles, originally derived in the Georgi-
Glashow model, are an important dynamical ingredient in theories with extended supersymmetry
N = 2, 4, and help explain the issues related with electric-magnetic duality. There is no such
solution in QCD-like theories without scalar fields. However, all of these theories have instantons
and their finite-T constituents known as instanton-dyons (or instanton-monopoles). The latter
leads to semiclassical partition functions, which for N = 2, 4 theories were shown to be identical
(“Poisson dual”) to the partition function for monopoles. We show how, in a pure gauge theory,
the semiclassical instanton-based partition function can also be Poisson-transformed into a partition
function, interpreted as the one of moving and rotating monopoles.

I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  T

c

expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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†
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‡
ismail.zahed@stonybrook.edu

related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
T
c

does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! T

c

, the monopole density has a peak
near T

c

. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > T

c

[21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  T

c

,
but also as non-condensed quasiparticles at T > T

c

.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! T

c

.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
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delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
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plasma [12–14], the deconfinement critical temperature
T
c

does coincide accurately with that of monopole BEC
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The same phenomenon in much simpler setting:
quantum particle on a circle at finite T

2

not have a microscopic description of these monopoles
in terms of the gauge fields. We do, however, derive the
corresponding partition function, based on a transformed
semiclassical partition function.

The semiclassical description of the vacuum of gauge
theories is based on the instanton solution [28]. At fi-
nite temperatures, however, the 4d instanton solution
has been shown to dissolve into instanton constituents,
known as instanton-dyons (or instanton-monopoles) [29–
31]. Studies of the ensembles of instanton-dyons have ex-
plained the deconfinement and chiral symmetry restora-
tion transitions both numerically [32, 33] and using a
mean-field analysis [34, 35]. For a recent short review,
see Ref. [36].

The construction of the instanton-dyons starts from
the same ’t Hooft-Polyakov monopole, but with the ze-
roth component of the gauge field A

0

acting as the scalar
adjoint “Higgs” field. However, these objects are pseudo-
particles and not particles, existing only in the Euclidean
formulation of the theory for which A

0

is real. Therefore,
while instanton-dyons do lead to successful semiclassical
applications, their usage for phenomenological applica-
tions is severely limited. Another obstacle to their devel-
opment, perhaps even more important for many, is that
their physical meaning remains rather obscure. In this
paper, we argue that it should not be so, and that the
instanton-dyon gauge field configurations are nothing else
but quantum paths of moving and rotating monopoles.

A gradual understanding of this statement began some
time ago, but remained rather unnoticed by the larger
community. One reason for that was the setting in which
it was shown, which was based on extended supersym-
metry. Only in these cases was one able to derive reli-
ably both partition functions – in terms of monopoles and
instanton-dyons – and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
answer, but shown instead to be related by the so-called
“Poisson duality.”

Since this concept it also not widely known, Sec. II
contains a pedagogical section, which discusses a much
simpler toy model of a rotator – a particle on a circle
– at finite temperature. We also obtain two expressions
for its partition function, one based on its excited states
and one based on “winding paths” in Euclidean time. In
this model, one can derive the analytic solution for both
sums and directly see that they are the same.

In Sec. III, we turn to theories with extended super-
symmetry. This section is a brief pedagogical review of
the works of Dorey and collaborators, and shows how the
Poisson duality works in this case – almost identically to
the rotator model.

In Sec. IV, we turn to pure gauge theories at finite tem-
perature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge con-
figurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we ar-
gue is counting occupations of the excited states of mov-

ing/rotating monopoles.

II. QUANTUM ROTATOR AT FINITE T AND
ITS DUAL DESCRIPTIONS

A quantum rotator is a particle moving on a circle. Its
location is defined by the angle ↵ 2 [0, 2⇡] and its action
is defined by kinetic and topological parts

S =

I
dt

⇤

2
↵̇2 + S

top

(!) , (1)

where ↵̇ = d↵/dt, and ⇤ = mR2 is the corresponding
moment of inertia for rotation. (It can be set to unity
by appropriately selecting units, but for the purposes of
this paper, we keep it.)

The topological part S
top

⇠
R

dt↵̇(t) does not lead
to any “force” – there is no contribution to the classical
equation of motion – but it provides an extra phase factor
in the quantum partition function. The phenomenon was
introduced by Aharonov and Bohm in a celebrated paper
[40] and is well known. We remind the reader that this
phase is an external parameter which can be induced
by a solenoid in extra dimensions, provided the rotating
particle is charged and the time derivative is generalized
to the long gauge-invariant derivative including the A

0

field.
The quantum mechanical spectrum of states is imme-

diately obtained via quantization of the angular momen-
tum l and the partition function at temperature T is

Z
1

=
1X

l=�1
exp

✓
� l2

2⇤T
+ il!

◆
, (2)

where, for convenience, we normalized the Aharonov-
Bohm contribution to a phase !. Since the angular mo-
mentum l is integer-valued, each term in Z

1

is a periodic
function of this phase, with a natural 2⇡ period. Note
also that positive and negative l cancel the imaginary
part, so Z

1

is real. Finally, this sum is best convergent
at small temperature T , where only a few states close to
the ground state with l = 0 need to be included.

In the dual approach, finite temperature is introduced
via the standard Euclidean Matsubara time defined on
another circle ⌧ 2 [0, � ⌘ 1/T ]. The path integral which
leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.

Classes of paths which make a di↵erent number n of
rotations around the original circle can be defined as
“straight” classical periodic paths

↵
n

(⌧) = 2⇡n
⌧

�
, (3)

plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following parti-

moment
of inertia

Aharonov-Bohm
 phase Matsubara 

winding number

3

tion function,

Z
2

=
1X

n=�1

p
2⇡⇤T exp

✓
� T⇤

2
(2⇡n � !)2

◆
. (4)

The key point here is that these quantum numbers, l used
for Z

1

and n for Z
2

, are very di↵erent in nature. In Z
1

,
each term of the sum is periodic in !, while in Z

2

, this
property is recovered only after summation over n. The
temperature T in Z

2

happens to be in an unusual place,
in the numerator of the exponent, so this sum converges
best at high temperature, unlike the sum in Z

1

. Indeed,
at high T the Matsubara circle becomes small and the
path integral is dominated by paths with small number
of windings.

In spite of such di↵erences, both expressions are in fact
the same! In this toy model, it is not di�cult to do the
sums numerically and plot the results. Furthermore, one
can also derive the analytic expressions, expressible in
terms of the elliptic theta function of the third kind

Z
1

= Z
2

= ✓
3

✓
� !

2
, exp

✓
� 1

2⇤T

◆◆
, (5)

which is plotted in Fig. 1 for few values of the tempera-
ture T .

FIG. 1. The partition function Z of the rotator as a func-
tion of the external Aharonov-Bohm phase ! (two periods
are shown to emphasize its periodicity). The (blue) solid,
(red) dashed and (green) dash-dotted curves are for ⇤T =
0.3, 0.5, 1.

Mathematically, the identity of the two sums can be
traced to the fact that our path integral is defined on
two circles, or, equivalently, a 2d torus, and the circles

can be interchanged. In string theory, such relations
are known as T-duality. In practice, these are the low-
temperature and the high-temperature approximations,
often used without noticing the exact summation and
duality.

Even if one is not able to identify the sums as the
same elliptic function, the equality can be seen from the
observation that the sum Z

1

is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z

2

. One can further recognize
that the identity of the two sums is just a particular case
of a more general relation known in mathematics as the
Poisson summation formula, valid not only for a Gaus-
sian but for arbitrary functions. For reference, let us
mention here one particular version [41],

1X
n=�1

f(! + nP ) =
1X

l=�1

1

P
f̃

✓
l

P

◆
ei2⇡l!/P , (6)

where f(x) is some function, f̃ is its Fourier transform,
and P is the period of both sums as a function of the
“phase” !.

III. SEMICLASSICAL THEORY AND
MONOPOLES IN THEORIES WITH EXTENDED

SUPERSYMMETRY

A. The setting

All of the following discussion concerns a Euclidean
theory defined on R3 ⇥ S1. In this section, unlike in the
following one, all of the fields, including the fermions,
have periodic boundary conditions on S1, and therefore
supersymmetry is not broken.

We study the weak coupling g ⌧ 1 scenario, which
makes the instantons and their constituents – as well
as the monopoles with actions/masses O(1/g2) – heavy
enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
one needs to select the circumference of the circle � to
be small enough such that the corresponding frequencies
⇠ 2⇡/� are large enough to ensure weak coupling.

Compactification of one coordinate to the circle is
needed to introduce “holonomies,” gauge invariant in-
tegrals over the circle

H
dx

µ

Aµ,
H

dx
µ

Cµ of the electric
and magnetic potentials, respectively. Their values can
have nonzero expectation values, which can be viewed
as external parameters given by Aharonov-Bohm fluxes
through the circle induced by fields in extra dimensions.
These holonomies will play important role in what fol-
lows. Dorey et al. [42] call these external parameters !
and �, respectively.

Finally, in order to make the discussion simpler, one
assumes the minimal non-Abelian color group SU(N

c

)

based on classical paths

2
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has been shown to dissolve into instanton constituents,
known as instanton-dyons (or instanton-monopoles) [29–
31]. Studies of the ensembles of instanton-dyons have ex-
plained the deconfinement and chiral symmetry restora-
tion transitions both numerically [32, 33] and using a
mean-field analysis [34, 35]. For a recent short review,
see Ref. [36].

The construction of the instanton-dyons starts from
the same ’t Hooft-Polyakov monopole, but with the ze-
roth component of the gauge field A

0

acting as the scalar
adjoint “Higgs” field. However, these objects are pseudo-
particles and not particles, existing only in the Euclidean
formulation of the theory for which A

0

is real. Therefore,
while instanton-dyons do lead to successful semiclassical
applications, their usage for phenomenological applica-
tions is severely limited. Another obstacle to their devel-
opment, perhaps even more important for many, is that
their physical meaning remains rather obscure. In this
paper, we argue that it should not be so, and that the
instanton-dyon gauge field configurations are nothing else
but quantum paths of moving and rotating monopoles.

A gradual understanding of this statement began some
time ago, but remained rather unnoticed by the larger
community. One reason for that was the setting in which
it was shown, which was based on extended supersym-
metry. Only in these cases was one able to derive reli-
ably both partition functions – in terms of monopoles and
instanton-dyons – and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
answer, but shown instead to be related by the so-called
“Poisson duality.”

Since this concept it also not widely known, Sec. II
contains a pedagogical section, which discusses a much
simpler toy model of a rotator – a particle on a circle
– at finite temperature. We also obtain two expressions
for its partition function, one based on its excited states
and one based on “winding paths” in Euclidean time. In
this model, one can derive the analytic solution for both
sums and directly see that they are the same.

In Sec. III, we turn to theories with extended super-
symmetry. This section is a brief pedagogical review of
the works of Dorey and collaborators, and shows how the
Poisson duality works in this case – almost identically to
the rotator model.

In Sec. IV, we turn to pure gauge theories at finite tem-
perature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge con-
figurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we ar-
gue is counting occupations of the excited states of mov-

ing/rotating monopoles.

II. QUANTUM ROTATOR AT FINITE T AND
ITS DUAL DESCRIPTIONS

A quantum rotator is a particle moving on a circle. Its
location is defined by the angle ↵ 2 [0, 2⇡] and its action
is defined by kinetic and topological parts

S =

I
dt

⇤

2
↵̇2 + S

top

(!) , (1)

where ↵̇ = d↵/dt, and ⇤ = mR2 is the corresponding
moment of inertia for rotation. (It can be set to unity
by appropriately selecting units, but for the purposes of
this paper, we keep it.)

The topological part S
top

⇠
R

dt↵̇(t) does not lead
to any “force” – there is no contribution to the classical
equation of motion – but it provides an extra phase factor
in the quantum partition function. The phenomenon was
introduced by Aharonov and Bohm in a celebrated paper
[40] and is well known. We remind the reader that this
phase is an external parameter which can be induced
by a solenoid in extra dimensions, provided the rotating
particle is charged and the time derivative is generalized
to the long gauge-invariant derivative including the A

0

field.
The quantum mechanical spectrum of states is imme-

diately obtained via quantization of the angular momen-
tum l and the partition function at temperature T is

Z
1

=
1X

l=�1
exp

✓
� l2

2⇤T
+ il!

◆
, (2)

where, for convenience, we normalized the Aharonov-
Bohm contribution to a phase !. Since the angular mo-
mentum l is integer-valued, each term in Z

1

is a periodic
function of this phase, with a natural 2⇡ period. Note
also that positive and negative l cancel the imaginary
part, so Z

1

is real. Finally, this sum is best convergent
at small temperature T , where only a few states close to
the ground state with l = 0 need to be included.

In the dual approach, finite temperature is introduced
via the standard Euclidean Matsubara time defined on
another circle ⌧ 2 [0, � ⌘ 1/T ]. The path integral which
leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.

Classes of paths which make a di↵erent number n of
rotations around the original circle can be defined as
“straight” classical periodic paths

↵
n

(⌧) = 2⇡n
⌧

�
, (3)

plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following parti-

↵(⌧) ↵ 2 [0, 2⇡]

⌧ 2 [0, ~/T ]
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Monopole-like objects have been identified in multiple lattice studies, and there is now a significant
amount of literature on their importance in phenomenology. Some analytic indications of their role,
however, are still missing. The ’t Hooft-Polyakov monopoles, originally derived in the Georgi-
Glashow model, are an important dynamical ingredient in theories with extended supersymmetry
N = 2, 4, and help explain the issues related with electric-magnetic duality. There is no such
solution in QCD-like theories without scalar fields. However, all of these theories have instantons
and their finite-T constituents known as instanton-dyons (or instanton-monopoles). The latter
leads to semiclassical partition functions, which for N = 2, 4 theories were shown to be identical
(“Poisson dual”) to the partition function for monopoles. We show how, in a pure gauge theory,
the semiclassical instanton-based partition function can also be Poisson-transformed into a partition
function, interpreted as the one of moving and rotating monopoles.

I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  T

c

expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
T
c

does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! T

c

, the monopole density has a peak
near T

c

. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > T

c

[21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  T

c

,
but also as non-condensed quasiparticles at T > T

c

.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! T

c

.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  T
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expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
T
c

does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! T
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, the monopole density has a peak
near T
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. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > T

c

[21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  T
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,
but also as non-condensed quasiparticles at T > T
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.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! T
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Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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The same phenomenon in much simpler setting:
quantum particle on a circle at finite T

2

not have a microscopic description of these monopoles
in terms of the gauge fields. We do, however, derive the
corresponding partition function, based on a transformed
semiclassical partition function.

The semiclassical description of the vacuum of gauge
theories is based on the instanton solution [28]. At fi-
nite temperatures, however, the 4d instanton solution
has been shown to dissolve into instanton constituents,
known as instanton-dyons (or instanton-monopoles) [29–
31]. Studies of the ensembles of instanton-dyons have ex-
plained the deconfinement and chiral symmetry restora-
tion transitions both numerically [32, 33] and using a
mean-field analysis [34, 35]. For a recent short review,
see Ref. [36].

The construction of the instanton-dyons starts from
the same ’t Hooft-Polyakov monopole, but with the ze-
roth component of the gauge field A

0

acting as the scalar
adjoint “Higgs” field. However, these objects are pseudo-
particles and not particles, existing only in the Euclidean
formulation of the theory for which A

0

is real. Therefore,
while instanton-dyons do lead to successful semiclassical
applications, their usage for phenomenological applica-
tions is severely limited. Another obstacle to their devel-
opment, perhaps even more important for many, is that
their physical meaning remains rather obscure. In this
paper, we argue that it should not be so, and that the
instanton-dyon gauge field configurations are nothing else
but quantum paths of moving and rotating monopoles.

A gradual understanding of this statement began some
time ago, but remained rather unnoticed by the larger
community. One reason for that was the setting in which
it was shown, which was based on extended supersym-
metry. Only in these cases was one able to derive reli-
ably both partition functions – in terms of monopoles and
instanton-dyons – and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
answer, but shown instead to be related by the so-called
“Poisson duality.”

Since this concept it also not widely known, Sec. II
contains a pedagogical section, which discusses a much
simpler toy model of a rotator – a particle on a circle
– at finite temperature. We also obtain two expressions
for its partition function, one based on its excited states
and one based on “winding paths” in Euclidean time. In
this model, one can derive the analytic solution for both
sums and directly see that they are the same.

In Sec. III, we turn to theories with extended super-
symmetry. This section is a brief pedagogical review of
the works of Dorey and collaborators, and shows how the
Poisson duality works in this case – almost identically to
the rotator model.

In Sec. IV, we turn to pure gauge theories at finite tem-
perature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge con-
figurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we ar-
gue is counting occupations of the excited states of mov-

ing/rotating monopoles.

II. QUANTUM ROTATOR AT FINITE T AND
ITS DUAL DESCRIPTIONS

A quantum rotator is a particle moving on a circle. Its
location is defined by the angle ↵ 2 [0, 2⇡] and its action
is defined by kinetic and topological parts

S =

I
dt

⇤

2
↵̇2 + S

top

(!) , (1)

where ↵̇ = d↵/dt, and ⇤ = mR2 is the corresponding
moment of inertia for rotation. (It can be set to unity
by appropriately selecting units, but for the purposes of
this paper, we keep it.)

The topological part S
top

⇠
R

dt↵̇(t) does not lead
to any “force” – there is no contribution to the classical
equation of motion – but it provides an extra phase factor
in the quantum partition function. The phenomenon was
introduced by Aharonov and Bohm in a celebrated paper
[40] and is well known. We remind the reader that this
phase is an external parameter which can be induced
by a solenoid in extra dimensions, provided the rotating
particle is charged and the time derivative is generalized
to the long gauge-invariant derivative including the A

0

field.
The quantum mechanical spectrum of states is imme-

diately obtained via quantization of the angular momen-
tum l and the partition function at temperature T is

Z
1

=
1X

l=�1
exp

✓
� l2

2⇤T
+ il!

◆
, (2)

where, for convenience, we normalized the Aharonov-
Bohm contribution to a phase !. Since the angular mo-
mentum l is integer-valued, each term in Z

1

is a periodic
function of this phase, with a natural 2⇡ period. Note
also that positive and negative l cancel the imaginary
part, so Z

1

is real. Finally, this sum is best convergent
at small temperature T , where only a few states close to
the ground state with l = 0 need to be included.

In the dual approach, finite temperature is introduced
via the standard Euclidean Matsubara time defined on
another circle ⌧ 2 [0, � ⌘ 1/T ]. The path integral which
leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.

Classes of paths which make a di↵erent number n of
rotations around the original circle can be defined as
“straight” classical periodic paths

↵
n

(⌧) = 2⇡n
⌧

�
, (3)

plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following parti-

moment
of inertia

Aharonov-Bohm
 phase Matsubara 

winding number

3

tion function,

Z
2

=
1X

n=�1

p
2⇡⇤T exp

✓
� T⇤

2
(2⇡n � !)2

◆
. (4)

The key point here is that these quantum numbers, l used
for Z

1

and n for Z
2

, are very di↵erent in nature. In Z
1

,
each term of the sum is periodic in !, while in Z

2

, this
property is recovered only after summation over n. The
temperature T in Z

2

happens to be in an unusual place,
in the numerator of the exponent, so this sum converges
best at high temperature, unlike the sum in Z

1

. Indeed,
at high T the Matsubara circle becomes small and the
path integral is dominated by paths with small number
of windings.

In spite of such di↵erences, both expressions are in fact
the same! In this toy model, it is not di�cult to do the
sums numerically and plot the results. Furthermore, one
can also derive the analytic expressions, expressible in
terms of the elliptic theta function of the third kind

Z
1

= Z
2

= ✓
3

✓
� !

2
, exp

✓
� 1

2⇤T

◆◆
, (5)

which is plotted in Fig. 1 for few values of the tempera-
ture T .

FIG. 1. The partition function Z of the rotator as a func-
tion of the external Aharonov-Bohm phase ! (two periods
are shown to emphasize its periodicity). The (blue) solid,
(red) dashed and (green) dash-dotted curves are for ⇤T =
0.3, 0.5, 1.

Mathematically, the identity of the two sums can be
traced to the fact that our path integral is defined on
two circles, or, equivalently, a 2d torus, and the circles

can be interchanged. In string theory, such relations
are known as T-duality. In practice, these are the low-
temperature and the high-temperature approximations,
often used without noticing the exact summation and
duality.

Even if one is not able to identify the sums as the
same elliptic function, the equality can be seen from the
observation that the sum Z

1

is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z

2

. One can further recognize
that the identity of the two sums is just a particular case
of a more general relation known in mathematics as the
Poisson summation formula, valid not only for a Gaus-
sian but for arbitrary functions. For reference, let us
mention here one particular version [41],

1X
n=�1

f(! + nP ) =
1X

l=�1

1

P
f̃

✓
l

P

◆
ei2⇡l!/P , (6)

where f(x) is some function, f̃ is its Fourier transform,
and P is the period of both sums as a function of the
“phase” !.

III. SEMICLASSICAL THEORY AND
MONOPOLES IN THEORIES WITH EXTENDED

SUPERSYMMETRY

A. The setting

All of the following discussion concerns a Euclidean
theory defined on R3 ⇥ S1. In this section, unlike in the
following one, all of the fields, including the fermions,
have periodic boundary conditions on S1, and therefore
supersymmetry is not broken.

We study the weak coupling g ⌧ 1 scenario, which
makes the instantons and their constituents – as well
as the monopoles with actions/masses O(1/g2) – heavy
enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
one needs to select the circumference of the circle � to
be small enough such that the corresponding frequencies
⇠ 2⇡/� are large enough to ensure weak coupling.

Compactification of one coordinate to the circle is
needed to introduce “holonomies,” gauge invariant in-
tegrals over the circle

H
dx

µ

Aµ,
H

dx
µ

Cµ of the electric
and magnetic potentials, respectively. Their values can
have nonzero expectation values, which can be viewed
as external parameters given by Aharonov-Bohm fluxes
through the circle induced by fields in extra dimensions.
These holonomies will play important role in what fol-
lows. Dorey et al. [42] call these external parameters !
and �, respectively.

Finally, in order to make the discussion simpler, one
assumes the minimal non-Abelian color group SU(N

c

)

based on classical paths
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not have a microscopic description of these monopoles
in terms of the gauge fields. We do, however, derive the
corresponding partition function, based on a transformed
semiclassical partition function.

The semiclassical description of the vacuum of gauge
theories is based on the instanton solution [28]. At fi-
nite temperatures, however, the 4d instanton solution
has been shown to dissolve into instanton constituents,
known as instanton-dyons (or instanton-monopoles) [29–
31]. Studies of the ensembles of instanton-dyons have ex-
plained the deconfinement and chiral symmetry restora-
tion transitions both numerically [32, 33] and using a
mean-field analysis [34, 35]. For a recent short review,
see Ref. [36].
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roth component of the gauge field A
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acting as the scalar
adjoint “Higgs” field. However, these objects are pseudo-
particles and not particles, existing only in the Euclidean
formulation of the theory for which A
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is real. Therefore,
while instanton-dyons do lead to successful semiclassical
applications, their usage for phenomenological applica-
tions is severely limited. Another obstacle to their devel-
opment, perhaps even more important for many, is that
their physical meaning remains rather obscure. In this
paper, we argue that it should not be so, and that the
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time ago, but remained rather unnoticed by the larger
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instanton-dyons – and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
answer, but shown instead to be related by the so-called
“Poisson duality.”

Since this concept it also not widely known, Sec. II
contains a pedagogical section, which discusses a much
simpler toy model of a rotator – a particle on a circle
– at finite temperature. We also obtain two expressions
for its partition function, one based on its excited states
and one based on “winding paths” in Euclidean time. In
this model, one can derive the analytic solution for both
sums and directly see that they are the same.

In Sec. III, we turn to theories with extended super-
symmetry. This section is a brief pedagogical review of
the works of Dorey and collaborators, and shows how the
Poisson duality works in this case – almost identically to
the rotator model.

In Sec. IV, we turn to pure gauge theories at finite tem-
perature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge con-
figurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we ar-
gue is counting occupations of the excited states of mov-
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location is defined by the angle ↵ 2 [0, 2⇡] and its action
is defined by kinetic and topological parts
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I
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2
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where ↵̇ = d↵/dt, and ⇤ = mR2 is the corresponding
moment of inertia for rotation. (It can be set to unity
by appropriately selecting units, but for the purposes of
this paper, we keep it.)

The topological part S
top

⇠
R

dt↵̇(t) does not lead
to any “force” – there is no contribution to the classical
equation of motion – but it provides an extra phase factor
in the quantum partition function. The phenomenon was
introduced by Aharonov and Bohm in a celebrated paper
[40] and is well known. We remind the reader that this
phase is an external parameter which can be induced
by a solenoid in extra dimensions, provided the rotating
particle is charged and the time derivative is generalized
to the long gauge-invariant derivative including the A
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field.
The quantum mechanical spectrum of states is imme-
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mentum l is integer-valued, each term in Z

1

is a periodic
function of this phase, with a natural 2⇡ period. Note
also that positive and negative l cancel the imaginary
part, so Z

1

is real. Finally, this sum is best convergent
at small temperature T , where only a few states close to
the ground state with l = 0 need to be included.

In the dual approach, finite temperature is introduced
via the standard Euclidean Matsubara time defined on
another circle ⌧ 2 [0, � ⌘ 1/T ]. The path integral which
leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.

Classes of paths which make a di↵erent number n of
rotations around the original circle can be defined as
“straight” classical periodic paths
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plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following parti-Note completely different dependence 
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Monopole-like objects have been identified in multiple lattice studies, and there is now a significant
amount of literature on their importance in phenomenology. Some analytic indications of their role,
however, are still missing. The ’t Hooft-Polyakov monopoles, originally derived in the Georgi-
Glashow model, are an important dynamical ingredient in theories with extended supersymmetry
N = 2, 4, and help explain the issues related with electric-magnetic duality. There is no such
solution in QCD-like theories without scalar fields. However, all of these theories have instantons
and their finite-T constituents known as instanton-dyons (or instanton-monopoles). The latter
leads to semiclassical partition functions, which for N = 2, 4 theories were shown to be identical
(“Poisson dual”) to the partition function for monopoles. We show how, in a pure gauge theory,
the semiclassical instanton-based partition function can also be Poisson-transformed into a partition
function, interpreted as the one of moving and rotating monopoles.

I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  T

c

expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
T
c

does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! T

c

, the monopole density has a peak
near T

c

. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > T

c

[21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  T

c

,
but also as non-condensed quasiparticles at T > T

c

.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! T

c

.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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The same phenomenon in much simpler setting:
quantum particle on a circle at finite T

2

not have a microscopic description of these monopoles
in terms of the gauge fields. We do, however, derive the
corresponding partition function, based on a transformed
semiclassical partition function.

The semiclassical description of the vacuum of gauge
theories is based on the instanton solution [28]. At fi-
nite temperatures, however, the 4d instanton solution
has been shown to dissolve into instanton constituents,
known as instanton-dyons (or instanton-monopoles) [29–
31]. Studies of the ensembles of instanton-dyons have ex-
plained the deconfinement and chiral symmetry restora-
tion transitions both numerically [32, 33] and using a
mean-field analysis [34, 35]. For a recent short review,
see Ref. [36].

The construction of the instanton-dyons starts from
the same ’t Hooft-Polyakov monopole, but with the ze-
roth component of the gauge field A

0

acting as the scalar
adjoint “Higgs” field. However, these objects are pseudo-
particles and not particles, existing only in the Euclidean
formulation of the theory for which A

0

is real. Therefore,
while instanton-dyons do lead to successful semiclassical
applications, their usage for phenomenological applica-
tions is severely limited. Another obstacle to their devel-
opment, perhaps even more important for many, is that
their physical meaning remains rather obscure. In this
paper, we argue that it should not be so, and that the
instanton-dyon gauge field configurations are nothing else
but quantum paths of moving and rotating monopoles.

A gradual understanding of this statement began some
time ago, but remained rather unnoticed by the larger
community. One reason for that was the setting in which
it was shown, which was based on extended supersym-
metry. Only in these cases was one able to derive reli-
ably both partition functions – in terms of monopoles and
instanton-dyons – and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
answer, but shown instead to be related by the so-called
“Poisson duality.”

Since this concept it also not widely known, Sec. II
contains a pedagogical section, which discusses a much
simpler toy model of a rotator – a particle on a circle
– at finite temperature. We also obtain two expressions
for its partition function, one based on its excited states
and one based on “winding paths” in Euclidean time. In
this model, one can derive the analytic solution for both
sums and directly see that they are the same.

In Sec. III, we turn to theories with extended super-
symmetry. This section is a brief pedagogical review of
the works of Dorey and collaborators, and shows how the
Poisson duality works in this case – almost identically to
the rotator model.

In Sec. IV, we turn to pure gauge theories at finite tem-
perature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge con-
figurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we ar-
gue is counting occupations of the excited states of mov-

ing/rotating monopoles.

II. QUANTUM ROTATOR AT FINITE T AND
ITS DUAL DESCRIPTIONS

A quantum rotator is a particle moving on a circle. Its
location is defined by the angle ↵ 2 [0, 2⇡] and its action
is defined by kinetic and topological parts

S =

I
dt

⇤

2
↵̇2 + S

top

(!) , (1)

where ↵̇ = d↵/dt, and ⇤ = mR2 is the corresponding
moment of inertia for rotation. (It can be set to unity
by appropriately selecting units, but for the purposes of
this paper, we keep it.)

The topological part S
top

⇠
R

dt↵̇(t) does not lead
to any “force” – there is no contribution to the classical
equation of motion – but it provides an extra phase factor
in the quantum partition function. The phenomenon was
introduced by Aharonov and Bohm in a celebrated paper
[40] and is well known. We remind the reader that this
phase is an external parameter which can be induced
by a solenoid in extra dimensions, provided the rotating
particle is charged and the time derivative is generalized
to the long gauge-invariant derivative including the A

0

field.
The quantum mechanical spectrum of states is imme-

diately obtained via quantization of the angular momen-
tum l and the partition function at temperature T is

Z
1

=
1X

l=�1
exp

✓
� l2

2⇤T
+ il!

◆
, (2)

where, for convenience, we normalized the Aharonov-
Bohm contribution to a phase !. Since the angular mo-
mentum l is integer-valued, each term in Z

1

is a periodic
function of this phase, with a natural 2⇡ period. Note
also that positive and negative l cancel the imaginary
part, so Z

1

is real. Finally, this sum is best convergent
at small temperature T , where only a few states close to
the ground state with l = 0 need to be included.

In the dual approach, finite temperature is introduced
via the standard Euclidean Matsubara time defined on
another circle ⌧ 2 [0, � ⌘ 1/T ]. The path integral which
leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.

Classes of paths which make a di↵erent number n of
rotations around the original circle can be defined as
“straight” classical periodic paths

↵
n

(⌧) = 2⇡n
⌧

�
, (3)

plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following parti-

moment
of inertia

Aharonov-Bohm
 phase Matsubara 

winding number

3

tion function,

Z
2

=
1X

n=�1

p
2⇡⇤T exp

✓
� T⇤

2
(2⇡n � !)2

◆
. (4)

The key point here is that these quantum numbers, l used
for Z

1

and n for Z
2

, are very di↵erent in nature. In Z
1

,
each term of the sum is periodic in !, while in Z

2

, this
property is recovered only after summation over n. The
temperature T in Z

2

happens to be in an unusual place,
in the numerator of the exponent, so this sum converges
best at high temperature, unlike the sum in Z

1

. Indeed,
at high T the Matsubara circle becomes small and the
path integral is dominated by paths with small number
of windings.

In spite of such di↵erences, both expressions are in fact
the same! In this toy model, it is not di�cult to do the
sums numerically and plot the results. Furthermore, one
can also derive the analytic expressions, expressible in
terms of the elliptic theta function of the third kind

Z
1

= Z
2

= ✓
3

✓
� !

2
, exp

✓
� 1

2⇤T

◆◆
, (5)

which is plotted in Fig. 1 for few values of the tempera-
ture T .

FIG. 1. The partition function Z of the rotator as a func-
tion of the external Aharonov-Bohm phase ! (two periods
are shown to emphasize its periodicity). The (blue) solid,
(red) dashed and (green) dash-dotted curves are for ⇤T =
0.3, 0.5, 1.

Mathematically, the identity of the two sums can be
traced to the fact that our path integral is defined on
two circles, or, equivalently, a 2d torus, and the circles

can be interchanged. In string theory, such relations
are known as T-duality. In practice, these are the low-
temperature and the high-temperature approximations,
often used without noticing the exact summation and
duality.

Even if one is not able to identify the sums as the
same elliptic function, the equality can be seen from the
observation that the sum Z

1

is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z

2

. One can further recognize
that the identity of the two sums is just a particular case
of a more general relation known in mathematics as the
Poisson summation formula, valid not only for a Gaus-
sian but for arbitrary functions. For reference, let us
mention here one particular version [41],

1X
n=�1

f(! + nP ) =
1X

l=�1

1

P
f̃

✓
l

P

◆
ei2⇡l!/P , (6)

where f(x) is some function, f̃ is its Fourier transform,
and P is the period of both sums as a function of the
“phase” !.

III. SEMICLASSICAL THEORY AND
MONOPOLES IN THEORIES WITH EXTENDED

SUPERSYMMETRY

A. The setting

All of the following discussion concerns a Euclidean
theory defined on R3 ⇥ S1. In this section, unlike in the
following one, all of the fields, including the fermions,
have periodic boundary conditions on S1, and therefore
supersymmetry is not broken.

We study the weak coupling g ⌧ 1 scenario, which
makes the instantons and their constituents – as well
as the monopoles with actions/masses O(1/g2) – heavy
enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
one needs to select the circumference of the circle � to
be small enough such that the corresponding frequencies
⇠ 2⇡/� are large enough to ensure weak coupling.

Compactification of one coordinate to the circle is
needed to introduce “holonomies,” gauge invariant in-
tegrals over the circle

H
dx

µ

Aµ,
H

dx
µ

Cµ of the electric
and magnetic potentials, respectively. Their values can
have nonzero expectation values, which can be viewed
as external parameters given by Aharonov-Bohm fluxes
through the circle induced by fields in extra dimensions.
These holonomies will play important role in what fol-
lows. Dorey et al. [42] call these external parameters !
and �, respectively.

Finally, in order to make the discussion simpler, one
assumes the minimal non-Abelian color group SU(N

c

)

based on classical paths
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can also derive the analytic expressions, expressible in
terms of the elliptic theta function of the third kind
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, exp

✓
� 1
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which is plotted in Fig. 1 for few values of the tempera-
ture T .

FIG. 1. The partition function Z of the rotator as a func-
tion of the external Aharonov-Bohm phase ! (two periods
are shown to emphasize its periodicity). The (blue) solid,
(red) dashed and (green) dash-dotted curves are for ⇤T =
0.3, 0.5, 1.

Mathematically, the identity of the two sums can be
traced to the fact that our path integral is defined on
two circles, or, equivalently, a 2d torus, and the circles

can be interchanged. In string theory, such relations
are known as T-duality. In practice, these are the low-
temperature and the high-temperature approximations,
often used without noticing the exact summation and
duality.

Even if one is not able to identify the sums as the
same elliptic function, the equality can be seen from the
observation that the sum Z

1

is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z

2

. One can further recognize
that the identity of the two sums is just a particular case
of a more general relation known in mathematics as the
Poisson summation formula, valid not only for a Gaus-
sian but for arbitrary functions. For reference, let us
mention here one particular version [41],

1X
n=�1

f(! + nP ) =
1X

l=�1

1

P
f̃

✓
l

P

◆
ei2⇡l!/P , (6)

where f(x) is some function, f̃ is its Fourier transform,
and P is the period of both sums as a function of the
“phase” !.

III. SEMICLASSICAL THEORY AND
MONOPOLES IN THEORIES WITH EXTENDED

SUPERSYMMETRY

A. The setting

All of the following discussion concerns a Euclidean
theory defined on R3 ⇥ S1. In this section, unlike in the
following one, all of the fields, including the fermions,
have periodic boundary conditions on S1, and therefore
supersymmetry is not broken.

We study the weak coupling g ⌧ 1 scenario, which
makes the instantons and their constituents – as well
as the monopoles with actions/masses O(1/g2) – heavy
enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
one needs to select the circumference of the circle � to
be small enough such that the corresponding frequencies
⇠ 2⇡/� are large enough to ensure weak coupling.

Compactification of one coordinate to the circle is
needed to introduce “holonomies,” gauge invariant in-
tegrals over the circle

H
dx

µ

Aµ,
H

dx
µ

Cµ of the electric
and magnetic potentials, respectively. Their values can
have nonzero expectation values, which can be viewed
as external parameters given by Aharonov-Bohm fluxes
through the circle induced by fields in extra dimensions.
These holonomies will play important role in what fol-
lows. Dorey et al. [42] call these external parameters !
and �, respectively.

Finally, in order to make the discussion simpler, one
assumes the minimal non-Abelian color group SU(N

c

)

And yet, they are the same!
(elliptic theta function of the 3 type)

↵(⌧) ↵ 2 [0, 2⇡]

⌧ 2 [0, ~/T ]
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Monopole-like objects have been identified in multiple lattice studies, and there is now a significant
amount of literature on their importance in phenomenology. Some analytic indications of their role,
however, are still missing. The ’t Hooft-Polyakov monopoles, originally derived in the Georgi-
Glashow model, are an important dynamical ingredient in theories with extended supersymmetry
N = 2, 4, and help explain the issues related with electric-magnetic duality. There is no such
solution in QCD-like theories without scalar fields. However, all of these theories have instantons
and their finite-T constituents known as instanton-dyons (or instanton-monopoles). The latter
leads to semiclassical partition functions, which for N = 2, 4 theories were shown to be identical
(“Poisson dual”) to the partition function for monopoles. We show how, in a pure gauge theory,
the semiclassical instanton-based partition function can also be Poisson-transformed into a partition
function, interpreted as the one of moving and rotating monopoles.

I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  T

c

expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
T
c

does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! T

c

, the monopole density has a peak
near T

c

. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > T

c

[21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  T

c

,
but also as non-condensed quasiparticles at T > T

c

.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! T

c

.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do

ar
X

iv
:1

80
2.

10
50

9v
1 

 [h
ep

-p
h]

  2
8 

Fe
b 

20
18

Are there monopoles in the quark-gluon plasma?

Adith Ramamurti,⇤ Edward Shuryak,† and Ismail Zahed‡

Department of Physics and Astronomy,

Stony Brook University,

Stony Brook, NY 11794, USA

(Dated: March 1, 2018)

Monopole-like objects have been identified in multiple lattice studies, and there is now a significant
amount of literature on their importance in phenomenology. Some analytic indications of their role,
however, are still missing. The ’t Hooft-Polyakov monopoles, originally derived in the Georgi-
Glashow model, are an important dynamical ingredient in theories with extended supersymmetry
N = 2, 4, and help explain the issues related with electric-magnetic duality. There is no such
solution in QCD-like theories without scalar fields. However, all of these theories have instantons
and their finite-T constituents known as instanton-dyons (or instanton-monopoles). The latter
leads to semiclassical partition functions, which for N = 2, 4 theories were shown to be identical
(“Poisson dual”) to the partition function for monopoles. We show how, in a pure gauge theory,
the semiclassical instanton-based partition function can also be Poisson-transformed into a partition
function, interpreted as the one of moving and rotating monopoles.

I. INTRODUCTION
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century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  T
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expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
T
c

does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! T

c

, the monopole density has a peak
near T
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. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > T
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[21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  T

c

,
but also as non-condensed quasiparticles at T > T
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.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! T
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.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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The same phenomenon in much simpler setting:
quantum particle on a circle at finite T

2

not have a microscopic description of these monopoles
in terms of the gauge fields. We do, however, derive the
corresponding partition function, based on a transformed
semiclassical partition function.

The semiclassical description of the vacuum of gauge
theories is based on the instanton solution [28]. At fi-
nite temperatures, however, the 4d instanton solution
has been shown to dissolve into instanton constituents,
known as instanton-dyons (or instanton-monopoles) [29–
31]. Studies of the ensembles of instanton-dyons have ex-
plained the deconfinement and chiral symmetry restora-
tion transitions both numerically [32, 33] and using a
mean-field analysis [34, 35]. For a recent short review,
see Ref. [36].

The construction of the instanton-dyons starts from
the same ’t Hooft-Polyakov monopole, but with the ze-
roth component of the gauge field A

0

acting as the scalar
adjoint “Higgs” field. However, these objects are pseudo-
particles and not particles, existing only in the Euclidean
formulation of the theory for which A

0

is real. Therefore,
while instanton-dyons do lead to successful semiclassical
applications, their usage for phenomenological applica-
tions is severely limited. Another obstacle to their devel-
opment, perhaps even more important for many, is that
their physical meaning remains rather obscure. In this
paper, we argue that it should not be so, and that the
instanton-dyon gauge field configurations are nothing else
but quantum paths of moving and rotating monopoles.

A gradual understanding of this statement began some
time ago, but remained rather unnoticed by the larger
community. One reason for that was the setting in which
it was shown, which was based on extended supersym-
metry. Only in these cases was one able to derive reli-
ably both partition functions – in terms of monopoles and
instanton-dyons – and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
answer, but shown instead to be related by the so-called
“Poisson duality.”

Since this concept it also not widely known, Sec. II
contains a pedagogical section, which discusses a much
simpler toy model of a rotator – a particle on a circle
– at finite temperature. We also obtain two expressions
for its partition function, one based on its excited states
and one based on “winding paths” in Euclidean time. In
this model, one can derive the analytic solution for both
sums and directly see that they are the same.

In Sec. III, we turn to theories with extended super-
symmetry. This section is a brief pedagogical review of
the works of Dorey and collaborators, and shows how the
Poisson duality works in this case – almost identically to
the rotator model.

In Sec. IV, we turn to pure gauge theories at finite tem-
perature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge con-
figurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we ar-
gue is counting occupations of the excited states of mov-

ing/rotating monopoles.

II. QUANTUM ROTATOR AT FINITE T AND
ITS DUAL DESCRIPTIONS

A quantum rotator is a particle moving on a circle. Its
location is defined by the angle ↵ 2 [0, 2⇡] and its action
is defined by kinetic and topological parts

S =

I
dt

⇤

2
↵̇2 + S

top

(!) , (1)

where ↵̇ = d↵/dt, and ⇤ = mR2 is the corresponding
moment of inertia for rotation. (It can be set to unity
by appropriately selecting units, but for the purposes of
this paper, we keep it.)

The topological part S
top

⇠
R

dt↵̇(t) does not lead
to any “force” – there is no contribution to the classical
equation of motion – but it provides an extra phase factor
in the quantum partition function. The phenomenon was
introduced by Aharonov and Bohm in a celebrated paper
[40] and is well known. We remind the reader that this
phase is an external parameter which can be induced
by a solenoid in extra dimensions, provided the rotating
particle is charged and the time derivative is generalized
to the long gauge-invariant derivative including the A

0

field.
The quantum mechanical spectrum of states is imme-

diately obtained via quantization of the angular momen-
tum l and the partition function at temperature T is

Z
1

=
1X

l=�1
exp

✓
� l2

2⇤T
+ il!

◆
, (2)

where, for convenience, we normalized the Aharonov-
Bohm contribution to a phase !. Since the angular mo-
mentum l is integer-valued, each term in Z

1

is a periodic
function of this phase, with a natural 2⇡ period. Note
also that positive and negative l cancel the imaginary
part, so Z

1

is real. Finally, this sum is best convergent
at small temperature T , where only a few states close to
the ground state with l = 0 need to be included.

In the dual approach, finite temperature is introduced
via the standard Euclidean Matsubara time defined on
another circle ⌧ 2 [0, � ⌘ 1/T ]. The path integral which
leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.

Classes of paths which make a di↵erent number n of
rotations around the original circle can be defined as
“straight” classical periodic paths

↵
n

(⌧) = 2⇡n
⌧

�
, (3)

plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following parti-

moment
of inertia

Aharonov-Bohm
 phase Matsubara 

winding number

3

tion function,

Z
2

=
1X

n=�1

p
2⇡⇤T exp

✓
� T⇤

2
(2⇡n � !)2

◆
. (4)

The key point here is that these quantum numbers, l used
for Z

1

and n for Z
2

, are very di↵erent in nature. In Z
1

,
each term of the sum is periodic in !, while in Z

2

, this
property is recovered only after summation over n. The
temperature T in Z

2

happens to be in an unusual place,
in the numerator of the exponent, so this sum converges
best at high temperature, unlike the sum in Z

1

. Indeed,
at high T the Matsubara circle becomes small and the
path integral is dominated by paths with small number
of windings.

In spite of such di↵erences, both expressions are in fact
the same! In this toy model, it is not di�cult to do the
sums numerically and plot the results. Furthermore, one
can also derive the analytic expressions, expressible in
terms of the elliptic theta function of the third kind

Z
1

= Z
2

= ✓
3

✓
� !

2
, exp

✓
� 1

2⇤T

◆◆
, (5)

which is plotted in Fig. 1 for few values of the tempera-
ture T .

FIG. 1. The partition function Z of the rotator as a func-
tion of the external Aharonov-Bohm phase ! (two periods
are shown to emphasize its periodicity). The (blue) solid,
(red) dashed and (green) dash-dotted curves are for ⇤T =
0.3, 0.5, 1.

Mathematically, the identity of the two sums can be
traced to the fact that our path integral is defined on
two circles, or, equivalently, a 2d torus, and the circles

can be interchanged. In string theory, such relations
are known as T-duality. In practice, these are the low-
temperature and the high-temperature approximations,
often used without noticing the exact summation and
duality.

Even if one is not able to identify the sums as the
same elliptic function, the equality can be seen from the
observation that the sum Z

1

is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z

2

. One can further recognize
that the identity of the two sums is just a particular case
of a more general relation known in mathematics as the
Poisson summation formula, valid not only for a Gaus-
sian but for arbitrary functions. For reference, let us
mention here one particular version [41],

1X
n=�1

f(! + nP ) =
1X

l=�1

1

P
f̃

✓
l

P

◆
ei2⇡l!/P , (6)

where f(x) is some function, f̃ is its Fourier transform,
and P is the period of both sums as a function of the
“phase” !.

III. SEMICLASSICAL THEORY AND
MONOPOLES IN THEORIES WITH EXTENDED

SUPERSYMMETRY

A. The setting

All of the following discussion concerns a Euclidean
theory defined on R3 ⇥ S1. In this section, unlike in the
following one, all of the fields, including the fermions,
have periodic boundary conditions on S1, and therefore
supersymmetry is not broken.

We study the weak coupling g ⌧ 1 scenario, which
makes the instantons and their constituents – as well
as the monopoles with actions/masses O(1/g2) – heavy
enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
one needs to select the circumference of the circle � to
be small enough such that the corresponding frequencies
⇠ 2⇡/� are large enough to ensure weak coupling.

Compactification of one coordinate to the circle is
needed to introduce “holonomies,” gauge invariant in-
tegrals over the circle

H
dx

µ

Aµ,
H

dx
µ

Cµ of the electric
and magnetic potentials, respectively. Their values can
have nonzero expectation values, which can be viewed
as external parameters given by Aharonov-Bohm fluxes
through the circle induced by fields in extra dimensions.
These holonomies will play important role in what fol-
lows. Dorey et al. [42] call these external parameters !
and �, respectively.

Finally, in order to make the discussion simpler, one
assumes the minimal non-Abelian color group SU(N

c

)

based on classical paths
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corresponding partition function, based on a transformed
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equation of motion – but it provides an extra phase factor
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leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.

Classes of paths which make a di↵erent number n of
rotations around the original circle can be defined as
“straight” classical periodic paths
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Gaussian integral over them leads to the following parti-Note completely different dependence 
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The key point here is that these quantum numbers, l used
for Z

1

and n for Z
2

, are very di↵erent in nature. In Z
1

,
each term of the sum is periodic in !, while in Z

2

, this
property is recovered only after summation over n. The
temperature T in Z

2

happens to be in an unusual place,
in the numerator of the exponent, so this sum converges
best at high temperature, unlike the sum in Z

1

. Indeed,
at high T the Matsubara circle becomes small and the
path integral is dominated by paths with small number
of windings.

In spite of such di↵erences, both expressions are in fact
the same! In this toy model, it is not di�cult to do the
sums numerically and plot the results. Furthermore, one
can also derive the analytic expressions, expressible in
terms of the elliptic theta function of the third kind
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which is plotted in Fig. 1 for few values of the tempera-
ture T .

FIG. 1. The partition function Z of the rotator as a func-
tion of the external Aharonov-Bohm phase ! (two periods
are shown to emphasize its periodicity). The (blue) solid,
(red) dashed and (green) dash-dotted curves are for ⇤T =
0.3, 0.5, 1.

Mathematically, the identity of the two sums can be
traced to the fact that our path integral is defined on
two circles, or, equivalently, a 2d torus, and the circles

can be interchanged. In string theory, such relations
are known as T-duality. In practice, these are the low-
temperature and the high-temperature approximations,
often used without noticing the exact summation and
duality.

Even if one is not able to identify the sums as the
same elliptic function, the equality can be seen from the
observation that the sum Z

1

is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z

2

. One can further recognize
that the identity of the two sums is just a particular case
of a more general relation known in mathematics as the
Poisson summation formula, valid not only for a Gaus-
sian but for arbitrary functions. For reference, let us
mention here one particular version [41],
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where f(x) is some function, f̃ is its Fourier transform,
and P is the period of both sums as a function of the
“phase” !.

III. SEMICLASSICAL THEORY AND
MONOPOLES IN THEORIES WITH EXTENDED

SUPERSYMMETRY

A. The setting

All of the following discussion concerns a Euclidean
theory defined on R3 ⇥ S1. In this section, unlike in the
following one, all of the fields, including the fermions,
have periodic boundary conditions on S1, and therefore
supersymmetry is not broken.

We study the weak coupling g ⌧ 1 scenario, which
makes the instantons and their constituents – as well
as the monopoles with actions/masses O(1/g2) – heavy
enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
one needs to select the circumference of the circle � to
be small enough such that the corresponding frequencies
⇠ 2⇡/� are large enough to ensure weak coupling.

Compactification of one coordinate to the circle is
needed to introduce “holonomies,” gauge invariant in-
tegrals over the circle

H
dx

µ

Aµ,
H

dx
µ

Cµ of the electric
and magnetic potentials, respectively. Their values can
have nonzero expectation values, which can be viewed
as external parameters given by Aharonov-Bohm fluxes
through the circle induced by fields in extra dimensions.
These holonomies will play important role in what fol-
lows. Dorey et al. [42] call these external parameters !
and �, respectively.

Finally, in order to make the discussion simpler, one
assumes the minimal non-Abelian color group SU(N

c
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following one, all of the fields, including the fermions,
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supersymmetry is not broken.

We study the weak coupling g ⌧ 1 scenario, which
makes the instantons and their constituents – as well
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enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
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Monopole-like objects have been identified in multiple lattice studies, and there is now a significant
amount of literature on their importance in phenomenology. Some analytic indications of their role,
however, are still missing. The ’t Hooft-Polyakov monopoles, originally derived in the Georgi-
Glashow model, are an important dynamical ingredient in theories with extended supersymmetry
N = 2, 4, and help explain the issues related with electric-magnetic duality. There is no such
solution in QCD-like theories without scalar fields. However, all of these theories have instantons
and their finite-T constituents known as instanton-dyons (or instanton-monopoles). The latter
leads to semiclassical partition functions, which for N = 2, 4 theories were shown to be identical
(“Poisson dual”) to the partition function for monopoles. We show how, in a pure gauge theory,
the semiclassical instanton-based partition function can also be Poisson-transformed into a partition
function, interpreted as the one of moving and rotating monopoles.

I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  T

c

expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
T
c

does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! T

c

, the monopole density has a peak
near T

c

. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > T

c

[21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  T

c

,
but also as non-condensed quasiparticles at T > T

c

.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! T

c

.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  T
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type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
T
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does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! T
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, the monopole density has a peak
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The key point here is that these quantum numbers, l used
for Z
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and n for Z
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, are very di↵erent in nature. In Z
1

,
each term of the sum is periodic in !, while in Z

2

, this
property is recovered only after summation over n. The
temperature T in Z

2

happens to be in an unusual place,
in the numerator of the exponent, so this sum converges
best at high temperature, unlike the sum in Z

1

. Indeed,
at high T the Matsubara circle becomes small and the
path integral is dominated by paths with small number
of windings.

In spite of such di↵erences, both expressions are in fact
the same! In this toy model, it is not di�cult to do the
sums numerically and plot the results. Furthermore, one
can also derive the analytic expressions, expressible in
terms of the elliptic theta function of the third kind
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which is plotted in Fig. 1 for few values of the tempera-
ture T .

FIG. 1. The partition function Z of the rotator as a func-
tion of the external Aharonov-Bohm phase ! (two periods
are shown to emphasize its periodicity). The (blue) solid,
(red) dashed and (green) dash-dotted curves are for ⇤T =
0.3, 0.5, 1.

Mathematically, the identity of the two sums can be
traced to the fact that our path integral is defined on
two circles, or, equivalently, a 2d torus, and the circles

can be interchanged. In string theory, such relations
are known as T-duality. In practice, these are the low-
temperature and the high-temperature approximations,
often used without noticing the exact summation and
duality.

Even if one is not able to identify the sums as the
same elliptic function, the equality can be seen from the
observation that the sum Z

1

is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z

2

. One can further recognize
that the identity of the two sums is just a particular case
of a more general relation known in mathematics as the
Poisson summation formula, valid not only for a Gaus-
sian but for arbitrary functions. For reference, let us
mention here one particular version [41],

1X
n=�1

f(! + nP ) =
1X

l=�1

1

P
f̃

✓
l

P

◆
ei2⇡l!/P , (6)

where f(x) is some function, f̃ is its Fourier transform,
and P is the period of both sums as a function of the
“phase” !.

III. SEMICLASSICAL THEORY AND
MONOPOLES IN THEORIES WITH EXTENDED

SUPERSYMMETRY

A. The setting

All of the following discussion concerns a Euclidean
theory defined on R3 ⇥ S1. In this section, unlike in the
following one, all of the fields, including the fermions,
have periodic boundary conditions on S1, and therefore
supersymmetry is not broken.

We study the weak coupling g ⌧ 1 scenario, which
makes the instantons and their constituents – as well
as the monopoles with actions/masses O(1/g2) – heavy
enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
one needs to select the circumference of the circle � to
be small enough such that the corresponding frequencies
⇠ 2⇡/� are large enough to ensure weak coupling.

Compactification of one coordinate to the circle is
needed to introduce “holonomies,” gauge invariant in-
tegrals over the circle

H
dx

µ

Aµ,
H

dx
µ

Cµ of the electric
and magnetic potentials, respectively. Their values can
have nonzero expectation values, which can be viewed
as external parameters given by Aharonov-Bohm fluxes
through the circle induced by fields in extra dimensions.
These holonomies will play important role in what fol-
lows. Dorey et al. [42] call these external parameters !
and �, respectively.

Finally, in order to make the discussion simpler, one
assumes the minimal non-Abelian color group SU(N
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Poisson summation formula
can be used to derive

the monopole Z

instanton-dyons with 
winding number n

5

to remind the reader that the two circles (or the double
torus) at play are the angle ↵ 2 [0, 2⇡] related with the
rotation of the monopole in ordinary/color space and the
compactified coordinate ⌧ 2 [0, �].

IV. SEMICLASSICAL THEORY AND
MONOPOLES IN PURE GAUGE THEORIES

Now consider theories without adjoint scalars, which
do not have an obvious ’t Hooft-Polyakov monopole so-
lution. One example of such a theory discussed in Ref.
[42] is the N=1⇤ theory obtained from the N=4 theory
by giving a mass to the three chiral multiplets, which, in
the IR, eliminates 3 out of 4 fermions and all 6 scalars.
We will not discuss this particular case, but proceed di-
rectly to pure gauge theory, starting from the instantons.

A. Finite temperature instanton-dyons with an
arbitrary time winding

At zero temperature, the Euclidean space R4 is sym-
metric in all four coordinates, and thus the corresponding
saddle points of the integral over fields – the instantons
– are 4d spherically symmetric. At finite temperatures,
Euclidean time is defined on the circle ⌧ 2 [0, �]. The
corresponding solitons – the calorons – are deformed pe-
riodic instantons.

In order to keep the weak coupling and the small den-
sity approximation valid, we need to consider su�ciently
high T . What this means practically will be discussed at
the end of the paper. For simplicity, for now we will also
ignore the issue of a dynamically generated potential and
mean value of the electric holonomy on the time circle,
and continue to consider it to be an external parameter;
we are therefore considering a “deformed” gauge theory.

The presence of the holonomy is known to split the
calorons into N

c

constituents [29–31] known as instanton-
dyons (or instanton-monopoles). The holonomy eigenval-
ues µ

i

, i = 1 . . . N
c

enter the gluon and instanton-dyon
masses via their di↵erences ⌫

i

= µ
i+1

� µ
i

. We will
consider only the simplest case of the number of colors
N

c

= 2, in which case there is a single holonomy parame-
ter. The caloron is composed of two types of the self-dual
dyons, known as the time-independent M dyon and the
time-twisted L dyon [44].

Following the discussion above, we need to consider a
larger set of saddle-point configurations with all possible
periodic paths. To be explicit, let us derive the corre-
sponding semiclassical configurations. One starts with
the static BPS monopole, with the A

0

component of the
gauge field now as the adjoint scalar. In the simplest

“hedgehog” gauge, the gauge fields are

Aa

4

= n
a

v

✓
coth(vr) � 1

vr

◆
,

Aa

i

= ✏
aij

n
j

r

✓
1 � vr

sinh(vr)

◆
, (12)

where n
a

= x
a

/r is the spatial unit vector and v is the
VEV of A

4

at large distances r ! 1.
The twisted solution is obtained in two steps. The first

is the substitution

v ! n(2⇡/�) � v , (13)

and the second is the gauge transformation with the
gauge matrix

⌦̂ = exp

✓
� i

�
n⇡⌧�̂3

◆
, (14)

where we recall that ⌧ = x4 2 [0, �] is the Matsubara
time. The derivative term in the gauge transformation
adds a constant to A

4

which cancels out the unwanted
n(2⇡/�) term, leaving v, the same as for the original
static monopole. After “gauge combing” of v into the
same direction, this configuration – we will call L

n

– can
be combined with any other one. The solutions are all
self-dual, but the magnetic and (the Euclidean) electric
charges are negative for positive n, opposite to the orig-
inal BPS monopole M for which both are positive.

The action corresponding to this solution is

S
n

= (4⇡/g2)|2⇡n/� � v| . (15)

The contribution to the partition function requires the
calculation of the pre-exponent, due to quantum fluctu-
ations around the L

n

solution. Following Appendix C of
Ref. [32], this can be extracted from the contribution of
the L dyon, which in turn was derived from the explicit
calculation of the moduli for the finite temperature in-
stanton (M+L system) in Ref. [44]. For the color SU(2)
group, taking the limit of large separation the L dyon,
the density has the form
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with ⌫̄ = 1 � ⌫ and ⌫ = vT/2⇡. Unlike the theo-
ries with extended supersymmetry, there are no cancel-
lations in the determinant of the nonzero modes between
bosons and fermions, and for L

n

classical configurations
those have not yet been calculated explicitly. On general
grounds, it is expected that it should append the part
from the moduli such that the correct running coupling
at the relevant scale ⇠ 2⇡T ⌫̄ is reproduced. This means
that one expects the exponent to read
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to remind the reader that the two circles (or the double
torus) at play are the angle ↵ 2 [0, 2⇡] related with the
rotation of the monopole in ordinary/color space and the
compactified coordinate ⌧ 2 [0, �].

IV. SEMICLASSICAL THEORY AND
MONOPOLES IN PURE GAUGE THEORIES
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lution. One example of such a theory discussed in Ref.
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We will not discuss this particular case, but proceed di-
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c
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where n
a

= x
a

/r is the spatial unit vector and v is the
VEV of A
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at large distances r ! 1.
The twisted solution is obtained in two steps. The first
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where we recall that ⌧ = x4 2 [0, �] is the Matsubara
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n(2⇡/�) term, leaving v, the same as for the original
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where the coupling g
0

is the defined at the normalization
scale p

0

. Similarly, the power of the action in numerator
must be appended by the two-loop corrections to the two-
loop beta function, and so on.

For our subsequent discussion, we will ignore the run-
ning and only keep the first term, taking the mean cou-
pling to be just a constant at a characteristic p

0

=
2⇡T h⌫̄i, say

S
0

⌘ S
L

+ S
M

=
8⇡2

g2
0

= 10 . (18)

The simulation of instanton-dyon ensembles [32] were
done for S

0

ranging from 5 to 13, and thus defining a
rather large range of dyon densities. Higher-twist instan-
tons L

n

for n > 1 or n < 0 are all strongly suppressed
and in practice can be ignored; the instanton-dyon en-
semble calculations performed in Ref. [32] only included
the n = 0 time independent dyon M and the first twisted
dyons L

1

because, in this range of temperatures, the
holonomy phase ! changes from a small value to ⇡ at
the confining phase transition, where ! and 2⇡ � ! are
comparable.

In the present calculation, we will keep all of them,
preserving exact periodicity, and write the semiclassical
partition function as

Z
inst

=
X
n

e
�
✓

4⇡
g20

◆
|2⇡n�!|

(19)

It is periodic in the holonomy, as it should be. Note that,
unlike in Eq. (11), it has a modulus rather than a square
of the corresponding expression in the exponent. This
is due to the fact that the sizes of L

n

and their masses
are all defined by the same combination |2⇡n � !|T and
therefore the moment of inertia ⇤ ⇠ 1/|2⇡n� � v|.

B. The Poisson transformation

A key point of this paper is that the existence of the
semiclassical instanton partition function implies the ex-

istence of monopoles moving and rotating in their collec-
tive coordinates. According to the general Poisson rela-
tion, Eq. (6), the Fourier transform of the corresponding
function appearing in the sum in Eq. (19) reads

F
⇣
e�A|x|

⌘
⌘
Z 1

⌫=�1
dx ei2⇡⌫�A|x|

=
2A

A2 + (2⇡⌫)2
, (20)

and therefore the monopole partition function is
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where the last equality is for q ⌧ 4⇡/g2
0

.

V. WHAT HAVE WE LEARNED ABOUT QCD
MONOPOLES?

Before summarizing our answer to this question, let
us first recall the setting and conclusions of the pre-
ceding section. The coupling is presumed small, so
4⇡/g2

0

� 1 and the semiclassical calculation is well con-
trolled. This implies that the corresponding temperature
is “high enough.” The holonomies !, �, treated as ex-
ternal Aharonov-Bohm phases imposed on the system,
create a certain “Higgsing” of the gluons, with only the
diagonal ones remaining massless. Calorons are split into
the instanton-dyons, and the semiclassical partition func-
tion, appended by all L

n

contributions, can be calculated.
What we would actually like to study is QCD with

quarks at temperatures around the deconfinement tran-
sition T ⇠ T

c

. Indeed, heavy-ion collisions create mat-
ter with T between roughly 2T

c

⇡ 300 MeV and 0.5T
c

.
Most finite-T lattice studies are devoted to this tempera-
ture range as well. While the coupling seems to be small
enough to keep the semiclassical approach reasonable,
S
0

= 8⇡2/g2 ⇠ 10, when including the pre-exponent, one
finds that the ensemble is not really dilute, and in order
to perform the integration over the collective variables,
one needs to solve a nontrivial many-body problem of
a dense instanton-dyon plasma. The instanton-dyon en-
semble in this scenario does shift the potential for the
electric holonomy dynamically to its “confining” value,
for T < T

c

. Semiclassical ensembles of instanton-dyons
also explain chiral symmetry breaking, and their changes
with flavor-dependent quark periodicity phases. Further
development of the semiclassical theory is, therefore, well
justified.

The main point of this paper, however, is di↵erent:
any semiclassical partition function, once derived, can be
Poisson-rewritten into an identical form, with the sum
over certain physical states. We have shown how one
can do so for pure gauge theory, without scalars, using
a relatively simple, or even schematic, form of its semi-
classical partition function, for which we calculated its
Poisson dual. We further argued that the resulting par-
tition function can be interpreted as being generated by
moving and rotating monopoles.

The results are a bit surprising. First, the action of a
monopole, although still formally large in weak coupling,
is only a logarithm of the semiclassical parameter; these
monopoles are therefore quite light. Second is the issue
of monopole rotation. The very presence of an object

q is angular momentum 
of rotating monopole,
so it is electric charge
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The density of  monopoles is well fitted by an inverse power of 
 log(T) , not power of T => 

so they are not really semiclassical objects!
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Fig. 2.6 The normalized monopole density ⇢/T 3 for the SU(2) pure gauge theory as a function

of the temperature, in units of the critical temperature T/T
c

, above the deconfinement transition.

and D’Elia [D’Alessandro and D’Elia, 2008]. Positive correlation for monopole-
antimonopole correspond to attraction, and negative ones for monopole-monopole
pair to repulsion. The shape of the correlator is exactly what one expects in a
Coulomb plasma of charges. The dashed lines are fits to the part of the correlators
where the e↵ect is small and can be treated by a linearized Debye theory: such fits
produce values of the e↵ective magnetic coupling g2/4⇡ = ↵m.

In Fig.2.7(right) from [Liao and Shuryak, 2008b] the fitted couplings are plotted
versus the temperature. As one can see, they indeed run opposite to the asymptotic
freedom, becoming stronger at high T . Furthermore, its reflection (the bottom of the
plot) is in qualitative agreement with the perturbative asymptotic freedom formula.

As one can also realize from these plots, by T = Tc magnetic coupling decreases
only to become ↵m ⇡ 1, not yet small. This means that the magnetic component
of sQGP is also a liquid – the title of [Liao and Shuryak, 2008b]. If it would be
otherwise, monopoles would have large mean free paths, in contradiction to heavy
ion data!

D’Alessandro, A. and D’Elia, M. (2008).  
Magnetic monopoles in the high temperature  

phase of Yang-Mills theories. 
 Nucl. Phys., B799:241–254. 0711.1266.  
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Appendix A 2. One should keep in mind that the plotted
density is normalized to T3. Such a normalization is
appropriate at high T, dominated by quarks and gluons,
but not necessarily at small T.
In this work, we will use two versions of the monopole

density, both obtained from lattice data, but in different
ways. The spread of the results is expected to represent the
uncertainty existing at the moment. The (blue) solid curve,
with a peak at Tc, in Fig. 1 shows the “directly observed”
monopole density, from Eq. (A3), which was measured on
the lattice [12].
The (red) dashed curve for the density of monopoles,

which peaks at about T ≈ 1.5Tc rather than at Tc, was
derived thermodynamically. It is the monopole density
needed to reproduce the correct pressure (entropy, energy)
of QCD as measured on the lattice [26]; in the window of
temperatures from 1 − 2Tc, the energy density, pressure,
and entropy density produced by electric quasiparticle
degrees of freedom is insufficient.
We have discussed this thermodynamic estimate in our

previous work [13]. As we will show below, a monopole
density with a peak around Tc seems to be crucial for
reproduction of the jet quenching data.

IV. CORRECTION DUE TO CORRELATIONS
OF MONOPOLES

Since the magnetic and electric couplings are compa-
rable, the ensemble of magnetic monopoles constitute a
strongly coupled plasma in the region of temperatures
above Tc. In such plasmas, there exist strong correlations
between positive and negative charges, which cancel out
their fields in some parts of space, reducing their impact on
jet quenching.

As expected by the renormalization group flow and
Dirac condition, it was directly shown on the lattice
(c.f. Refs. [12,27]) that monopoles become more correlated
as temperature is increased [16]. We have evaluated
corrections to the monopole contribution to jet quenching
using configurations from our previous path-integral
Monte Carlo simulations [13]. In that work, we reproduced
the lattice correlation functions and the critical condensa-
tion of the monopoles, in a two-component Coulomb Bose
gas with varying coupling. In the process of doing these
studies, we created quantum ensembles of monopole paths,
which we can now use to test what effect these correlations
have on the transverse momentum acquired by a jet.
In order to determine the magnitude of this effect, we

calculate the net force along a line going through an
uncorrelated configuration (random distribution of monop-
oles and antimonopoles), and then through a random sample
of the configurations created in the study of Ref. [13].
The correlations in the plasma are not extremely strong

(there is no crystal like structure, etc.) but are indeed
present—the maximal deviation from 1 of the radial
distribution function is 0.2 at 1.1Tc and 0.4 at 3.8Tc;
see Refs. [12,13,27] for detailed plots of the radial
distribution functions.
Figure 2 shows the ratio of the average momentum

transfer squared per unit length for the correlated and
uncorrelated cases. From Tc to 4Tc, the ratio is approx-
imately 0.85, meaning that the correlations reduce the q̂ by
15%. Intuitively, the reduction of transferred momentum
was expected, since the force on a jet fromþ and − charges
will increasingly cancel the more correlated they are.

V. THE EVOLUTION OF THE AMBIENT MATTER
AT RHIC AND LHC ENERGIES

Before we embark on the evaluation of the jet quenching
parameters, we need to define the fireball temperature,

FIG. 1. Electric and magnetic quasiparticle densities used. The
(blue) solid line shows the magnetic monopole density as directly
observed on the lattice. The (red) long dashed line is the
monopole density extracted from the thermodynamics (pressure),
along with the densities of quarks (purple, short dashed) and
gluons (green, dot dashed).

FIG. 2. Ratio of correlated to uncorrelated average momentum
transfer square per mean free path as a function of the temperature.
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density with a peak around Tc seems to be crucial for
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Since the magnetic and electric couplings are compa-
rable, the ensemble of magnetic monopoles constitute a
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between positive and negative charges, which cancel out
their fields in some parts of space, reducing their impact on
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As expected by the renormalization group flow and
Dirac condition, it was directly shown on the lattice
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as temperature is increased [16]. We have evaluated
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using configurations from our previous path-integral
Monte Carlo simulations [13]. In that work, we reproduced
the lattice correlation functions and the critical condensa-
tion of the monopoles, in a two-component Coulomb Bose
gas with varying coupling. In the process of doing these
studies, we created quantum ensembles of monopole paths,
which we can now use to test what effect these correlations
have on the transverse momentum acquired by a jet.
In order to determine the magnitude of this effect, we

calculate the net force along a line going through an
uncorrelated configuration (random distribution of monop-
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(there is no crystal like structure, etc.) but are indeed
present—the maximal deviation from 1 of the radial
distribution function is 0.2 at 1.1Tc and 0.4 at 3.8Tc;
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imately 0.85, meaning that the correlations reduce the q̂ by
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was expected, since the force on a jet fromþ and − charges
will increasingly cancel the more correlated they are.
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Magnetic objects and their 
dynamics: classics 

•  Dirac explained how magnetic charges may coexists with 
quantum mechanics (1934) 

•  �t Hooft and Polyakov discovered monopoles in Non-Abelian 
gauge theories (1974) 

•  �t Hooft and Mandelstamm suggested �dual superconductor� 
mechanism for confinement (1982) 

•  Seiberg and Witten shown how it works, in the N=2 Super -
Yang-Mills theory (1994) 

   Particle -  monopoles

   
 (1976)



a monopole and a charge: 
classical motion 

E M

Observation by J.J.Thompson:

even static charge+monopole
lead to rotating electromagnetic field

A.Poincare:
angular momentum of the particle 

plus that of the field is conserved =>
motion on a cone, not plane as usualE B

Pointing vector rotates

. H. Poincare ́, C. R. Acad. Sci. Ser. B. 123, 530 (1896).  

~S = [ ~E ⇥ ~B]

~S



 two charges play ping-pong 
with a monopole  without 

even moving!  
Dual to Budker’s  
 magnetic bottle  

Indeed, collisions are much 
 more frequent than in cascades 

+ -

M



 two charges play ping-pong 
with a monopole  without 

even moving!  
Dual to Budker’s  
 magnetic bottle  

Indeed, collisions are much 
 more frequent than in cascades 

like a proverbial drunkard cannot go home 
colliding with few lamp posts 

+ -

M



 two charges play ping-pong 
with a monopole  without 

even moving!  
Dual to Budker’s  
 magnetic bottle  

Indeed, collisions are much 
 more frequent than in cascades 

classical kinetics of the “dual plasma”, with E and M charges
was simulated by molecular dynamics, 

diffusion coefficient and viscosity calculated

like a proverbial drunkard cannot go home 
colliding with few lamp posts 

+ -

M



Quantum-mechanical problem of a charge-monopole scattering 
(should belong to QM textbooks but is not there)

e · g ⌘ n integer is the only parameter 
It is dimesionless  

so the scattering phase 
 cannot depend on momenta

j0(j0 + 1) = j(j + 1)� n2

�j = ⇡j0

Both j (total orbital mom.)  
and n (that of the field) are integers 

but j’ is not!!!!! Thus complicated  
angular distribution

Unlike in a standard scattering problem 
Ylm angular functions cannot be used: 

At large l,m>>1 those describe a scattering plane 
But we know in classical limit it is the Poincare cone

 D. G. Boulware, L. S. Brown, R. N. Cahn, S. D. Ellis, and C. k. Lee,  
Phys. Rev. D 14, 2708 (1976).  

J. S. Schwinger, K. A. Milton, W. Y. Tsai, L. L. DeRaad, and D. C. Clark,  
Ann. Phys. (N.Y.) 101, 451 (1976).



gluon-monopole scattering explains small viscosity!
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Not surprising, large correction to transport 

•  RHIC: T/Tc<2, LHC T/Tc<4: we predict 
hydro will still be there, with η/s about .2 
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Figure 14: Left panel: gluon-monopole and gluon-gluon scattering rate. Right panel:
gluon-monopole and gluon-gluon viscosity over entropy ratio, ⇥/s.

with the prime marking the secondary gluons. If the gluon mass is small (high T )
those corrections are small: their magnitude is ⇧f⌃ ⇥ (T/m) ⇥ 1/e(T ) ⇤ 1. In the
experimentally relevant region, when m/T = O(1), the e�ect is not enhanced and
is additionally suppressed by the expectation values of the Polyakov lines11 ⇥ ⇧L⌃2.

As we have already mentioned in the introduction, Xu, C. Greiner and Stöcker
[8] have suggested an alternative explanation for small QGP viscosity, namely the
next-order radiative processes, gg ⌅ ggg. Using perturbative matrix elements and
�s = 0.3..0.6, they were able to obtain ⇥/s, suppressed by a significant factor (as
compared to what comes out from the gg ⌅ gg process): their numbers are close to
what we get from the gm process. Obviously, both mechanisms, albeit having such
di�erent origin, would thus be su⇥cient to explain the well-known hydrodynamic
results for radial and elliptic flow at RHIC.

It will require more work to see how these results will change, when further
refinements are introduced. Let us mention few of those:
(i) Xu et al used near-massless perturbative gluons: bet in the RHIC domain lattice
quasiparticle masses are ⇥ 800MeV , much larger than T , and thus emission of extra
gluon gets suppressed.
(ii) include the suppression by the Polyakov VEV ¡L¿
(iii) look at even higher order corrections to see if perturbative series have any
converegence. As discussed by one of us years ago in [45], naively the processes
gg� > ng with n = 4, ... have even larger rates for coupling as large as �s = 0.3..0.6
used.

Acknowledgements We thank Jinfeng Liao for multiple useful discussions, as

11We do not agree with Hidaka and Pisarski [46] in their conclusion that ⇧L⌃ < 1 makes viscosity
� smaller by ⇧L⌃2.
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We study the role of magnetic monopoles at high enough temperature T > 2Tc, when they can be

considered heavy, rare objects embedded into matter consisting mostly of the usual ‘‘electric’’ quasi-

particles, quarks, and gluons. We review available lattice results on monopoles at finite temperatures.

Then we proceed to classical and quantum charge-monopole scattering, solving the problem of gluon-

monopole scattering for the first time. The explicit calculations are performed in the framework of the

Georgi-Glashow model; the results that we obtain are nevertheless quite general. Connections to QCD are

carefully discussed. We find that, while the gluon-monopole scattering hardly influences thermodynamic

quantities, it does produce a large transport cross section, significantly exceeding that for pQCD gluon-

gluon scattering up to quite high T. Thus, in spite of their relatively small density at high T, monopoles are

extremely important for quark-gluon plasma transport properties, keeping viscosity small enough for

hydrodynamics to work at the LHC.

DOI: 10.1103/PhysRevD.80.034004 PACS numbers: 12.38.Mh, 12.39.!x

I. INTRODUCTION

A. Overview

As it is known from the 1970s, QCD at high temperature
T is weakly coupled [1] and provides perturbative screen-
ing of the charge [2], thus being called quark-gluon plasma
(QGP). Creating and studying this phase of matter in the
laboratory has been the goal of experiments at CERN
Super Proton Synchroton and recently at the Relativistic
Heavy Ion Collider (RHIC) facility in Brookhaven
National Laboratory, soon to be continued by the ALICE
Collaboration at the Large Hadron Collider (LHC). RHIC
experiments have revealed robust collective phenomena in
the form of radial and elliptic flows, which turned out to be
quite accurately described by near-ideal hydrodynamics.
QGP thus seems to be the most perfect liquid known, with
the smallest viscosity-to-entropy ratio !=s.

The theory of QGP has shifted from the perturbative-
based one, appropriate for a weakly coupled (gas) regime,
to the nonperturbative methods needed to address the
strongly coupled QGP (sQGP for short) regime. This
‘‘paradigm shift,’’ documented in Refs. [3,4], is still pro-
foundly affecting the developments. The methods address-
ing strongly coupled gauge theories include, in particular,
the so-called AdS/CFT correspondence, relating strongly
coupled gauge theory to weakly coupled string theory in a
particular setting. We will not discuss it in this paper; for a
recent review, see e.g. [5]. On pure phenomenological
grounds, it has been argued that, since many substances
exhibit a minimum of the viscosity at some phase transi-
tions, perhaps QGP is the ‘‘best liquid’’ at the QCD phase
transition as well, namely, at T ¼ Tc [6].

Another duality which has been used to explain unusual
properties of the sQGP is the electric-magnetic duality.
Liao and one of us have proposed the so-called ‘‘magnetic
scenario’’ [7], according to which the near-Tc region is
dominated by magnetic monopoles. This is not surprising,
if the deconfinement phase transition is basically inter-
preted as their Bose condensation. Based on molecular
dynamics of classical plasmas with both electric and mag-
netic quasiparticles, it has been further argued in that work
that the minimal viscosity/entropy ratio (the best liquid)
does not correspond to the phase transition point T ¼ Tc,
but rather to the ‘‘electric-magnetic equilibrium,’’ at T #
1:4Tc, where both components of QGP contribute about
equally to transport coefficients. We will review more
recent works on the subject in a later section.
One of the central questions is how sQGP with ‘‘near-

perfect fluidity’’ will change into a weakly coupled wQGP
with increasing T. In view of the next round of heavy-ion
experiments at LHC, a quite urgent question is what trans-
port properties are expected to be observed there, at tem-
peratures reaching about twice those reached at RHIC. In
order to answer this question, one of course has to under-
stand where the ‘‘perfect fluidity’’ property of QGP comes
from. As an important example of a perturbative point of
view, we mention the work by Xu, Greiner, and Stöcker [8]
who argued that the QGP is only moderately coupled, with
"s ¼ 0:3 $ $ $ 0:6, explaining the small viscosity by inclu-
sion of the next-order radiative processes, gg $ ggg. We
will discuss this issue partially in the next section, dealing
with parametric dependences of densities and scattering
rates, and also at the end of the paper in the Discussion
section. Here we only notice that, if this should be the
explanation, one would expect a very slow transition to
weakly coupled QGP, induced by the logarithmic running
of the coupling.*shuryak@tonic.physics.sunysb.edu
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Strong jet quenching was found at RHIC
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Fig. 36. π0 RAA(pT ) for central (0–10 %) and peripheral (80–92 %) Au+Au collisions
[49] and minimum-bias d+Au collisions [64]. The shaded boxes on the left show the
systematic errors for the Au+Au RAA values resulting from overall normalization
of spectra and uncertainties in TAB . The shaded box on the right shows the same
systematic error for the d+Au points.

onset of suppression. The charged particles and π0’s exhibit similar evolution
of suppression with Npart. In the most central collisions we obtain RAA val-
ues of 0.24 ± 0.04(total) and 0.23 ± 0.05(total) for charged particles and π0’s
respectively. In peripheral collisions, RAA approaches one, but the systematic
errors on the most peripheral TAB values are sufficiently large that we cannot
rule out ∼ 20% deviations of the peripheral Au+Au hard-scattering yields
from the TAB-scaled p + p cross sections.
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R. Baier, Yuri L. Dokshitzer, Alfred H. Mueller, S. Peigne,  
D. Schiff Nucl.Phys. B484 (1997) 265-282
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A relatively recent story: the angular distribution of jet quenching and monopoles

A jet in shorter x direction suffers less quenching by matter

dN

dyd

2
p?

⇠
⇥
1 + 2v2(p?)cos(2�)

⇤

The theory gave reasonably good description of quenching itself 
But experiment stubbornly gave v2 about twice larger than  

all theories predicted

An explanation proposed: in these theories  
the quenching is proportional to the density.  

And the most dense region (shown by the dark red) 
is much “more round” than less dense (pink) region. 
Perhaps quenching peaks at intermediate density?

High pt 
jets

Angular Dependence of Jet Quenching Indicates Its Strong Enhancement Near the QCD Phase Transition  
Jinfeng Liao, Edward Shuryak Phys.Rev.Lett. 102 (2009) 202302 

this reproduces  
the azimuthal distribution of jet quenching. 

The Azimuthal asymmetry at large p(t) seem to be too large for a `jet quenching'  
E.V. Shuryak (SUNY, Stony Brook). Dec 2001. 3 pp.  
Published in Phys.Rev. C66 (2002) 027902
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Role of QCD monopoles in jet quenching  
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Published in Phys.Rev. D97 (2018) no.1, 016010 

Appendix A 2. One should keep in mind that the plotted
density is normalized to T3. Such a normalization is
appropriate at high T, dominated by quarks and gluons,
but not necessarily at small T.
In this work, we will use two versions of the monopole

density, both obtained from lattice data, but in different
ways. The spread of the results is expected to represent the
uncertainty existing at the moment. The (blue) solid curve,
with a peak at Tc, in Fig. 1 shows the “directly observed”
monopole density, from Eq. (A3), which was measured on
the lattice [12].
The (red) dashed curve for the density of monopoles,

which peaks at about T ≈ 1.5Tc rather than at Tc, was
derived thermodynamically. It is the monopole density
needed to reproduce the correct pressure (entropy, energy)
of QCD as measured on the lattice [26]; in the window of
temperatures from 1 − 2Tc, the energy density, pressure,
and entropy density produced by electric quasiparticle
degrees of freedom is insufficient.
We have discussed this thermodynamic estimate in our

previous work [13]. As we will show below, a monopole
density with a peak around Tc seems to be crucial for
reproduction of the jet quenching data.

IV. CORRECTION DUE TO CORRELATIONS
OF MONOPOLES

Since the magnetic and electric couplings are compa-
rable, the ensemble of magnetic monopoles constitute a
strongly coupled plasma in the region of temperatures
above Tc. In such plasmas, there exist strong correlations
between positive and negative charges, which cancel out
their fields in some parts of space, reducing their impact on
jet quenching.

As expected by the renormalization group flow and
Dirac condition, it was directly shown on the lattice
(c.f. Refs. [12,27]) that monopoles become more correlated
as temperature is increased [16]. We have evaluated
corrections to the monopole contribution to jet quenching
using configurations from our previous path-integral
Monte Carlo simulations [13]. In that work, we reproduced
the lattice correlation functions and the critical condensa-
tion of the monopoles, in a two-component Coulomb Bose
gas with varying coupling. In the process of doing these
studies, we created quantum ensembles of monopole paths,
which we can now use to test what effect these correlations
have on the transverse momentum acquired by a jet.
In order to determine the magnitude of this effect, we

calculate the net force along a line going through an
uncorrelated configuration (random distribution of monop-
oles and antimonopoles), and then through a random sample
of the configurations created in the study of Ref. [13].
The correlations in the plasma are not extremely strong

(there is no crystal like structure, etc.) but are indeed
present—the maximal deviation from 1 of the radial
distribution function is 0.2 at 1.1Tc and 0.4 at 3.8Tc;
see Refs. [12,13,27] for detailed plots of the radial
distribution functions.
Figure 2 shows the ratio of the average momentum

transfer squared per unit length for the correlated and
uncorrelated cases. From Tc to 4Tc, the ratio is approx-
imately 0.85, meaning that the correlations reduce the q̂ by
15%. Intuitively, the reduction of transferred momentum
was expected, since the force on a jet fromþ and − charges
will increasingly cancel the more correlated they are.

V. THE EVOLUTION OF THE AMBIENT MATTER
AT RHIC AND LHC ENERGIES

Before we embark on the evaluation of the jet quenching
parameters, we need to define the fireball temperature,

FIG. 1. Electric and magnetic quasiparticle densities used. The
(blue) solid line shows the magnetic monopole density as directly
observed on the lattice. The (red) long dashed line is the
monopole density extracted from the thermodynamics (pressure),
along with the densities of quarks (purple, short dashed) and
gluons (green, dot dashed).

FIG. 2. Ratio of correlated to uncorrelated average momentum
transfer square per mean free path as a function of the temperature.
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matter composition, by d.o.f.energy density, and entropy density profiles. For this study,
we will focus on one specific bin, 20%–30%, of centrality,
both for LHC and RHIC collisions. Assuming very rapid
equilibration, the relation between these profiles are given
by equilibrium equation of state (EoS), which has been well
studied on the lattice.
For definiteness, we use parametrization of the energy

density from the lattice data of Ref. [26], given in Eq. (A2).
The initial energy density distribution corresponding to
standard Glauber-type analysis, as in Ref. [28]. We also
calculated all quantities with IP-Glasma initial conditions,
which include fluctuating color fields.
The temperature profiles of the fireballs at τ ¼ 0.2 fm=c

are shown in Fig. 3 for both RHIC and LHC energies. One
can see that the absolute size and the ellipticity of the near-
Tc peripheral regions (blue-purple) are in fact slightly
different.
As a first step, we start with simple Bjorken ð1þ 1ÞD

expansion, with the temperature decreasing with time as
Tðτ; x; yÞ ¼ Tðτ0; x; yÞðτ=τ0Þ−1=3. In a Bjorken-expanding
background, the temperature in all regions decrease with

time in the same way, and the matter does not expand in the
transverse direction.
We then apply a more realistic ð2þ 1ÞD hydrodynamic

evolution, with both smooth and fluctuating initial con-
ditions. An example of a realistic medium evolution wewill
use is shown in Fig. 4. One can see that, as time progresses,
the (purple) near-Tc region rather quickly takes over the
whole fireball, but that the overall size of the fireball region
at and above Tc remains approximately the same, unlike
what would happen in the ð1þ 1ÞD Bjorken expansion
scenario. Another observation, most clear from two last
plots, is that eventually the system splits into two “nut
shells,” making the azimuthal asymmetry stronger.
As we will see, the hydrodynamic background has an

important influence on the results of our jet quenching
calculations. As such, it is important that we also reproduce
the soft physics of these heavy-ion collisions. The IP-
Glasma with hydrodynamics given by MUSIC are studied
in Refs. [29,30], and in general give good agreement with
hadronic observables. For our hydrodynamics with optical
Glauber initial conditions [31], the simulated and exper-
imental hadronic observables are detailed in Appendix B.

VI. JET QUENCHING AT RHIC AND LHC
ENERGIES: ENERGY LOSS, AZIMUTHAL
ANISOTROPY, AND DIJET ASYMMETRY

The probability distributions of quark and gluon jets in
their transversemomenta and the location of productionwere
generated by Monte Carlo algorithm in a standard perturba-
tive way, based on Refs. [32,33]. The essential point is that
the probability of jet production at a particular location is
proportional to the product of two nuclear thickness func-
tions, and that the jet energy spectrum is given by a power
law. The produced jets traverse the medium, from the
origination point, with an isotropic distribution.

FIG. 4. Temperature profile of a 20%–30% centrality 2.76 TeV Pb-Pb collision, shown at various times of the hydrodynamic
evolution. This evolution was done using IP-Glasma initial conditions and ð2þ 1ÞD hydrodynamics with bulk viscosity.

(a) (b)

FIG. 3. Temperature profile of 20%–30% centrality
(a) 2.76 TeV Pb-Pb and (b) 200 GeVAu-Au collisions calculated
using the energy density profile at τ ¼ 0.2 fm=c from Ref. [28]
and equation of state from Ref. [26].

ADITH RAMAMURTI and EDWARD SHURYAK PHYS. REV. D 97, 016010 (2018)

016010-6

(a) (c)

(b) (d)

FIG. 7. Azimuthal anisotropy of charged hadrons in 2.76 Pb-Pb collisions (a),(b), and neutral pions in 200 GeVAu-Au collisions (c),
(d). The first row (a),(c) is the results for monopole density from the lattice, while the second row (b),(d) is results for monopole density
from the equation of state. The (red) solid curve is for IP-Glasma initial conditions and ð2þ 1ÞD hydrodynamics with bulk viscosity
(ζ ≠ 0), the (blue) dash-dot curve is for Glauber initial conditions and ð2þ 1ÞD hydrodynamics with bulk viscosity (ζ ≠ 0), the (green)
dash-dot-dot curve is for Glauber initial conditions and ð2þ 1ÞD hydrodynamics without bulk viscosity (ζ ¼ 0), and the (purple) dashed
curve is for the smooth Glauber initial condition with ð1þ 1ÞD Bjorken evolution. The (black) dotted curve is for IP-Glasma initial
conditions and ð2þ 1ÞD hydrodynamics with bulk viscosity (ζ ≠ 0) with no monopoles. Collider data from Refs. [39,40] for the LHC
and Ref. [41] for RHIC.

(a) (c)

(b) (d)

FIG. 6. Nuclear modification factor of charged hadrons in 2.76 Pb-Pb collisions (a),(b), and neutral pions in 200 GeVAu-Au collisions
(c),(d). The first row (a),(c) is the results for monopole density from the lattice, while the second row (b),(d) is results for monopole
density from the equation of state. The (red) solid curve is for IP-Glasma initial conditions and ð2þ 1ÞD hydrodynamics with bulk
viscosity (ζ ≠ 0), the (blue) dash-dot curve is for Glauber initial conditions and ð2þ 1ÞD hydrodynamics with bulk viscosity (ζ ≠ 0),
the (green) dash-dot-dot curve is for Glauber initial conditions and ð2þ 1ÞD hydrodynamics without bulk viscosity (ζ ¼ 0), and the
(purple) dashed curve is for the smooth Glauber initial condition with ð1þ 1ÞD Bjorken evolution. Collider data from Refs. [35,36] for
LHC and Refs. [37,38] for RHIC.
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FIG. 1: A possible contribution to the path integral representation of the partition function of 7 identical particles, in which
the particles undergo a permutation made up of a 1-cycle, a 2-cycle and a 4-cycle.

III. MONOPOLE CONDENSATION

If we interpret the set of wrapping monopole trajectories, extracted from one gauge configuration of our Monte-
Carlo sample, as one possible configuration of the Euclidean path integral representation of an ensemble of identical
monopoles and antimonopoles at thermal equilibrium, then a trajectory which wraps k times before closing can be
interpreted as a set of k monopoles (or antimonopoles) which permutate cyclically after going through the periodic
Euclidean time direction.
In the path integral describing N identical particles at thermal equilibrium, each possible configuration of the N

particle paths contributing to the functional integral needs to be periodic, apart from a possible permutation of the N
particles (the sign of the permutation is attached to the contribution if the particles are fermions). That means that
the configuration is not necessarily composed of N closed paths (that would correspond to the identical permutation),
but is in general made up of M closed paths, with M ≤ N : if the j-th path wraps kj times around the Euclidean

time direction then
∑M

j=1 kj = N and the configuration corresponds to a permutation made up of M cycles of sizes
k1, k2, . . . kM . In Fig. 1 we report an example corresponding to a permutation of 7 particles partitioned into a 1-cycle,
a 2-cycle and a 4-cycle.
If effects related to quantum statistics are negligible, i.e. if the system is very close to the Boltzmann approximation,

configurations corresponding to permutations different from the identical one are expected to have a negligible weight
in the path integral, so that trajectories wrapping more than one time, corresponding to the exchange of two or more
particles, are very rare. The number of trajectories wrapping more and more times is instead expected to increase
as quantum effects become more important, and this should be especially true close to a transition associated with
Bose-Einstein Condensation (BEC) (or with similar phenomena).

A. Numerical simulations

In Table I we report the normalized average densities ρk/T 3 of trajectories wrapping k times as a function of
temperature, determined for SU(2) pure gauge theory by use of the standard plaquette action and of the MAG
Abelian projection. Data include both monopole and antimonopole trajectories and have been obtained by extracting
monopole currents from samples consisting of O(103) independent gauge configurations for each value of T . The
superscript a or b above the temperature value refers to two different values of the inverse gauge coupling, β = 2.70
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FIG. 2: Normalized densities ρk/T
3 as a function of T/Tc.

proportional2 to

∑

P

|xP1
. . . xPN ⟩

where the sum is over all the possible permutations P of the N particles. The partition function can be written as

Z =
1

N !

∑

P

∫

d3x1 . . .

∫

d3xN ⟨xP1
. . . xPN |e−βH |x1 . . . xN ⟩ . (9)

We keep only the kinetic term K = p2/(2m) of the Hamiltionian H , discarding interactions and relativistic effects:
we shall discuss these approximations in Section III C.
The assumption of absence of particle-particle interactions implies that the matrix element in Eq. (9) can be

conveniently factorized according to the decomposition of the permutation into disjoint cycles. To clarify this point,
consider the following explicit case involving 5 particles and a permutation composed of a 3-cycle plus a 2-cycle:

⟨x3, x1, x2, x5, x4|e−H/T |x1, x2, x3, x4, x5⟩ =
⟨x3, x1, x2|e−(p2

1
+p2

2
+p2

3
)/(2mT )|x1, x2, x3⟩⟨x5, x4|e−(p2

4
+p2

5
)/(2mT )|x4, x5⟩ . (10)

Also the integration in Eq. (9) can be carried on independently over groups of x variables belonging to the same
cycle, so that each summand permutation can be factorized into a product of different contributions and the partition
function can be rewritten as follows:

Z =
1

N !

∑

P

∏

k

znk

k (11)

2 The normalization factor is 1/
√
N ! if the N coordinates are all different and changes otherwise.

ar
X

iv
:1

0
0

2
.4

1
6

1
v

1
  

[h
ep

-l
at

] 
 2

2
 F

eb
 2

0
1

0

Thermal Monopole Condensation and Confinement
in finite temperature Yang-Mills Theories

Alessio D’Alessandro, Massimo D’Elia1 and Edward V. Shuryak2
1Dipartimento di Fisica, Università di Genova and INFN, Via Dodecaneso 33, 16146 Genova, Italy
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We investigate the connection between Color Confinement and thermal Abelian monopoles popu-
lating the deconfined phase of SU(2) Yang-Mills theory, by studying how the statistical properties of
the monopole ensemble change as the confinement/deconfinement temperature is approached from
above. In particular we study the distribution of monopole currents with multiple wrappings in
the Euclidean time direction, corresponding to two or more particle permutations, and show that
multiple wrappings increase as the deconfinement temperature is approached from above, in a way
compatible with a condensation of such objects happening right at the deconfining transition. We
also address the question of the thermal monopole mass, showing that different definitions give
consistent results only around the transition, where the monopole mass goes down and becomes of
the order of the critical temperature itself.

PACS numbers: 11.15.Ha, 64.60.Bd, 12.38.Aw, 67.85.Jk

I. INTRODUCTION

Color confinement is not yet fully understood in terms of the first principles of Quantum Chromodynamics (QCD).
Models exist which relate confinement to the condensation of topological defects in the QCD ground state; one of
them is based on dual superconductivity of the QCD vacuum [1, 2]. According to this model, color confinement is due
to the spontaneous breaking of a magnetic simmetry, induced by the condensation of magnetically charged defects
(e.g. magnetic monopoles), which yields a non-vanishing magnetically charged Higgs condensate.
The existence of a new phase of matter, in which quark and gluons are deconfined (Quark-Gluon Plasma), is a

well defined prediction of lattice QCD simulations: the deconfined phase is under active experimental search in heavy
ion experiments. However the physical properties expected for this phase are not yet clearly understood: the Quark-
Gluon Plasma (QGP) is still strongly interacting above the deconfining temperature Tc and its properties may be
more similar to those of an almost perfect liquid.
One of the hypotheses which have been put forward in the recent past is that QGP properties may be dominated

by a magnetic component [3–5]. In Ref. [4] such magnetic component has been related to thermal Abelian monopoles
evaporating from the magnetic condensate which is believed to induce color confinement at low temperatures; moreover
it has been proposed to detect such thermal monopoles in finite temperature lattice QCD simulations, by identifying
them with monopole currents having a non-trivial wrapping in the Euclidean temporal direction [4, 6, 7]. First
numerical investigations of these wrapping trajectories were performed in Ref. [6] and [7], while a systematic study,
regarding the deconfined phase of SU(2) Yang-Mills theory, has been performed in Ref. [8].
The definition of Abelian magnetic monopoles in non-Abelian gauge theories requires the identification of Abelian

degrees of freedom: that is done usually by a procedure known as Abelian projection and relies on the choice of an
adjoint field. Since no natural adjoint field exists in usual QCD, that implies some arbitrariness; a popular choice is
to perform the projection in the so-called Maximal Abelian gauge (MAG). Results obtained in Ref. [8] have shown
that, as already well known for Abelian monopole currents in general, also the number and the locations of monopole
currents with a non-trivial wrapping in the Euclidean time direction are quantities which depend on the choice of the
Abelian projection.
Despite that, the density and the spatial correlation functions of MAG thermal monopoles show a negligible de-

pendence on the UV cut-off [8], as expected for a physical quantity. The temperature dependence of the monopole
density, ρ, is not compatible with a (massive or massless) free particle behavior and is instead well described, in the
whole range of temperatures explored, by a behavior ρ ∝ T 3/(logT/Λeff)2 with Λeff ∼ 100 MeV, while the behavior
ρ ∝ T 3/(logT )3, predicted by dimensional reduction arguments, is compatible with data for T > 5 Tc. This is in
agreement with the picture of an electric dominated phase for Yang–Mills theories at very high temperatures, in which
the magnetic component is strongly interacting [3].
Moreover the study of density–density spatial correlation functions has verified the presence of a repulsive (attrac-

tive) interaction for a monopole–monopole (monopole–antimonopole) pair, which at large distances is in agreement
with a screened Coulomb potential and a screening length of the order of 0.1 fm. The above results have suggested a
liquid-like behavior for the thermal monopole ensemble above Tc [9] and stimulated further research about the possible
role of magnetic monopoles in the Quark-Gluon Plasma [10–12].
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I. INTRODUCTION

Color confinement is not yet fully understood in terms of the first principles of Quantum Chromodynamics (QCD).
Models exist which relate confinement to the condensation of topological defects in the QCD ground state; one of
them is based on dual superconductivity of the QCD vacuum [1, 2]. According to this model, color confinement is due
to the spontaneous breaking of a magnetic simmetry, induced by the condensation of magnetically charged defects
(e.g. magnetic monopoles), which yields a non-vanishing magnetically charged Higgs condensate.
The existence of a new phase of matter, in which quark and gluons are deconfined (Quark-Gluon Plasma), is a

well defined prediction of lattice QCD simulations: the deconfined phase is under active experimental search in heavy
ion experiments. However the physical properties expected for this phase are not yet clearly understood: the Quark-
Gluon Plasma (QGP) is still strongly interacting above the deconfining temperature Tc and its properties may be
more similar to those of an almost perfect liquid.
One of the hypotheses which have been put forward in the recent past is that QGP properties may be dominated

by a magnetic component [3–5]. In Ref. [4] such magnetic component has been related to thermal Abelian monopoles
evaporating from the magnetic condensate which is believed to induce color confinement at low temperatures; moreover
it has been proposed to detect such thermal monopoles in finite temperature lattice QCD simulations, by identifying
them with monopole currents having a non-trivial wrapping in the Euclidean temporal direction [4, 6, 7]. First
numerical investigations of these wrapping trajectories were performed in Ref. [6] and [7], while a systematic study,
regarding the deconfined phase of SU(2) Yang-Mills theory, has been performed in Ref. [8].
The definition of Abelian magnetic monopoles in non-Abelian gauge theories requires the identification of Abelian

degrees of freedom: that is done usually by a procedure known as Abelian projection and relies on the choice of an
adjoint field. Since no natural adjoint field exists in usual QCD, that implies some arbitrariness; a popular choice is
to perform the projection in the so-called Maximal Abelian gauge (MAG). Results obtained in Ref. [8] have shown
that, as already well known for Abelian monopole currents in general, also the number and the locations of monopole
currents with a non-trivial wrapping in the Euclidean time direction are quantities which depend on the choice of the
Abelian projection.
Despite that, the density and the spatial correlation functions of MAG thermal monopoles show a negligible de-

pendence on the UV cut-off [8], as expected for a physical quantity. The temperature dependence of the monopole
density, ρ, is not compatible with a (massive or massless) free particle behavior and is instead well described, in the
whole range of temperatures explored, by a behavior ρ ∝ T 3/(logT/Λeff)2 with Λeff ∼ 100 MeV, while the behavior
ρ ∝ T 3/(logT )3, predicted by dimensional reduction arguments, is compatible with data for T > 5 Tc. This is in
agreement with the picture of an electric dominated phase for Yang–Mills theories at very high temperatures, in which
the magnetic component is strongly interacting [3].
Moreover the study of density–density spatial correlation functions has verified the presence of a repulsive (attrac-

tive) interaction for a monopole–monopole (monopole–antimonopole) pair, which at large distances is in agreement
with a screened Coulomb potential and a screening length of the order of 0.1 fm. The above results have suggested a
liquid-like behavior for the thermal monopole ensemble above Tc [9] and stimulated further research about the possible
role of magnetic monopoles in the Quark-Gluon Plasma [10–12].
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FIG. 4: Chemical potentials reported in Table II for α = 0 and α = 2.5 and two different lattice spacings, together with a fit
of them according to Eq. (24).

α TBEC/Tc ν′ χ2/d.o.f.
3 1.005(13) 0.71(5) 2.24
2.5 1.000(12) 0.68(5) 1.23
2 0.989(13) 0.68(5) 1.72
0 0.988(15) 0.61(5) 2.34

TABLE III: Results of the fit of chemical potentials according to µ̂ = A (T − TBEC)
ν′

, for various different values of α. The
lowest temperature, T = 1.017, has always been discarded from the fit.

the following, however it should be clear that in the present context, in which we are dealing with a neutral plasma
of monopoles and antimonopoles, it should be better regarded as a parameter for an effective description of the
distribution in the number of k-cycles.
The result obtained in the free case, f(k) = (λ3k5/2)−1, can be modified by interactions in various ways. In the case

of a dilute hard sphere gas model, reported in Ref. [23], f(k) is the same as in the free case plus corrections of order
r/λ, where r is the sphere radius. Part of the interactions could be also taken into account by an effective dynamical
mass, as done by Feynman for the study of 4He. In general we may expect a leading contribution f(k) ∝ 1/kα,
where α could be different from 5/2 (this is also the way in which relativistic effects should show up). In any case,
the approach to condensation should be signalled by the vanishing of the chemical potential, i.e. at the condensation
point large k-cycles should cease to be suppressed exponentially in k. This is exactly what we want to check on
our data reported in Table I. As we shall discuss soon, the outcome is that the vanishing of the chemical potential
happens at a point which is compatible with Tc and that this result is remarkably stable for various different choices
of the function f(k).
We have tried to fit our data for the normalized densities ρk/T 3 according to Ae−µ̂k/kα. In order to obtain

reasonable values for χ2/d.o.f. we had to take into account only data with k > 2 − 3 for T ≤ 1.2 Tc and with k > 1
for higher temperatures. If the α parameter is left free, the χ2 is minimized for α around 2 for most of the explored

The lesson: monopoles at Tc, 
behave as He4

 =>Bose-Einstein 
condensation 

Is confinement due to BEC of monopoles?
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FIG. 12. Spatial correlations from our simulations (red circles) matched via scaling to lattice correlations (blue triangles) from
[7] at various temperatures.

theories with an increasing Nf have found that deconfine-
ment transition corresponds to stronger coupling g2(Tc),
smaller monopole mass and therefore higher monopole
density.

All dimensional quantities are defined following stan-
dard lattice convention for units: the vacuum string ten-
sion for all theories is declared to be the same in MeV.
With such units, the critical temperature for SU(2) and
SU(3) is di↵erent, ⇠ 300 MeV for SU(2) and ⇠ 260 MeV

for SU(3), but the densities of each of the SU(2) and
SU(3) monopoles are about the same [9]. If T

c

is lower,
the overall density of monopoles grows, so the density of
each separate species of monopole becomes large enough
to form a Bose-Einstein condensate. Recall that, as was
found in [9], we observed that the inclusion of an addi-
tional interacting component to a Bose Coulomb system
did not alter the critical temperature behavior, provided
the density of each component was not altered.

Fig. 3.19 Spatial correlations of particles in quantum Coulomb Bose gas, from PIMC simulations

(red circles) compared to lattice data for monopoles.

Quantum phenomena, including BEC, in ensemble of 
monopoles recently studied by Path Integral Monte Carlo
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of low-density hard spheres: the critical temperature for the BEC phase transition
grows with the coupling. Yet if the coupling becomes large enough, Tc rapidly drops
below the critical temperature for an ideal Bose gas. Eventually, as the particles
are “too repulsive,” the BEC phenomenon becomes impossible since it becomes
essentially too costly (in terms of the action) to permute them and BEC goes away
completely.

5

FIG. 2. The exponential suppression of k-cycles as a func-
tion of temperature for the 4He system. The vanishing of
the e↵ective chemical potential µ̂ indicates the BEC critical
temperature Tc.

As a first step in making an e↵ective model for a
quantum two-component Coulomb Bose gas, we seek to
find the dependence of T

c

on the Coulomb interaction
strength; i.e., by varying ↵ in

V
int

(rij) = ↵
qiqj

rij
. (23)

In our numerical study, the magnitude of charges, q; the
masses, m; ~; Boltzmann’s constant, kb; and the density,
n, are all scaled to 1. This leaves as variables only the
temperature, T , entering via the period of the Euclidean
time ⌧ 2 [0, 1/T ], the magnitude of the Coulomb cou-
pling, ↵, and the signs of the charges. In these units, the
critical temperature for the ideal Bose gas is

T
0

= 2⇡

 
1

�
�

3

2

�
! 2

3

= 3.3125 . (24)

and this value will be indicated by a horizontal dashed
line in the plots to follow. More details of the numerical
simulations explained hereafter, including system sizes
and parameters, are given in Appendix B.

1. One-component Bose gas with varied Coulomb coupling
parameter

For the one-component Coulomb Bose gas, with com-
pensating distributed charge commonly known as jel-
lium, we seek to investigate the dependence of T

c

on the
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FIG. 3. The critical temperature for the BEC phase transi-
tion as a function of the coupling, �. The red circles are the
results of the finite-size scaling superfluid fraction calculation
for systems of 8, 16, and 32 particles; and the blue trian-
gles are the results of the permutation-cycle calculation for a
system with 32 particles. The black dashed line denotes the
Einstein ideal Bose gas critical temperature, T0.

strength of the Coulomb coupling parameter, and com-
pare, qualitatively, it to the relation in the hard-sphere
case.

The results of our simulations are shown in Fig. 3.
The first thing to note is that the two methods used pro-
duce results consistent within the statistical errors. Note
further that we find the same behavior at small values of
the coupling as in the case of low-density hard spheres
[29]; the critical temperature for the BEC phase transi-
tion grows. Yet if the coupling becomes large enough, T

c

rapidly drops below the critical temperature for an ideal
Bose gas. Eventually, as the particles are “too repul-
sive,” the BEC phenomenon becomes impossible since it
becomes essentially “too costly” (in terms of the action,
as compared to Feynman value) to permute them.

Let us also note that, while the permutation-cycle
method agrees well with the older finite-size scaling
method, the requirements for the system size to yield
comparable results are di↵erent. The finite-size scaling
method can give decent results even using two systems,
of only 8 and 16 particles, while the permutation cy-
cle method required many runs of at least 32 particles.
Therefore, at least in the case of long-range forces, which
take a large amount of CPU time to compute, the finite-
size scaling method may be more practical. If one, how-
ever, is looking at other quantities that require larger
system sizes to begin with – such as the superfluid frac-

Fig. 3.18 The critical temperature for the BEC phase transiion as a function of the coupling, ↵.
The red circles are the results of the finite-size scaling superfluid fraction calculation for systems

of 8, 16, and 32 particles; the blue triangles are the results of the permutation-cycle calculation

for a system with 32 particles. The black dashed line denotes the Einstein ideal Bose gas critical
temperature.

We have discussed at the end of the previous chapter the lattice data on the spa-
tial monopole-monopole and monopole-antimonopole correlations. In Fig.3.19 these
data are compared with PIMC simulation for a Coulomb Bose Gas [Ramamurti and
Shuryak, 2017]. The comparison shows very good agreement, increasing the confi-
dence that a quantum ensemble of monopoles is described by this model well. It
also allowed us to fix the e↵ective magnetic coupling rather accurate, without any
reliance on the Debye fits.

Ramamurti, A. and Shuryak, E. (2017). Effective Model of QCD Magnetic Monopoles 

From Numerical Study of One- and Two-Component Coulomb Quantum Bose Gases.

 Phys. Rev., D95(7):076019. 



 =>electric/magnetic couplings (e/g) 
 must run in the opposite directions!    

Old good Dirac 
condition  

the  �equilibrium line� 

αs(el)= αs(mag) =1 
needs to be in the 
plasma phase 

  monopoles should be dense  enough and 
sufficiently weakly coupled before 
deconfinement to get BEC 

 =>αs(mag) < αs(el): how small 

can αs(mag)  be?  

αs(electric)  αs(magnetic)=1 
``magnetic scenario�: Liao,ES hep-ph/0611131,Chernodub+Zakharov  

αs(el) 

αs(mag) 



summary
• QGP is a new form of matter at T>Tc. Near 

Tc it is a record holder of the smallest 
viscosity (mean free path) and the highest jet 
quenching 

• this happens because of peaking 
density of magnetic monopoles there

•  at T<Tc monopoles undergo BEC

• In QCD. Monopoles are not 
semiclassical, but instanton-dyons 
are!





peak of the density of monopoles at Tc 
explains not only a dip in viscosity (m.f.p.)

but also other things such as jet quenching

Xu, J., J. Liao, and M. Gyulassy (2015),  
arXiv:1508.00552 



extra slides



MD simulation for novel plasma containing 
both charges and  monopoles (Liao,ES hep-ph/

0611131)   
 monopole admixture up to M50=50% , 1000 particles, numerically 

solved 
diffusion decreases indefinitely, viscosity does not 


