RHICf:
RUN17 Operation and Status of Analysis

Takashi Sako (ICRR, Univ. of Tokyo)
for the RHICf Collaboration

Institute for Space-Earth Environmental Research, Nagoya University, Kobayashi-Maskawa Institute, Nagoya University, Graduate School of Science, Nagoya University, ICRR, University of Tokyo, Riken/Riken BNL Research Center, JAEA, Waseda University, Tokushima University, Japan, Seoul National University, Korea University, Korea, INFN, Univ. di Firenze, INFN, Univ. di Catania, Italy
RHIC forward (RHICf) is ...
a kind of Zero degree calorimeters
@STAR interaction point

RHICf detector
- Former LHCf Arm1 detector used at LHC
- Two compact sampling calorimeters
- 44 r.l. (1.7 hadron interaction lengths)
- <5% and 40% energy resolutions for EM and hadronic showers, respectively
- <0.2mm and <1mm position resolutions for EM and hadronic showers, respectively

(traditional) Zero Degree Calorimeter behind RHICf

Compact double calorimeters (20mmx20mm and 40mmx40mm)
Neutral particles, photons (including \(\pi^0 \rightarrow 2\gamma\)) and neutrons, are observed.

- Widest and gapless coverage by moving the detector in vertical.
- Radially polarized beams maximized asymmetry in the vertical direction.
Physics Goals

1. Cross section measurements for cosmic-ray physics
 • RHICf energy corresponds to $1.4 \times 10^{14} \text{eV}$ CR
 • \sqrt{s} scaling will be tested with LHCf data at 10^{17}eV

2. Single-spin asymmetry measurement in transversely polarized proton-proton collisions
 • Asymmetry discovered by the RHIC experiments will be precisely measured
 • Thanks to excellent position resolution of RHICf, coverage in p_T will increase
• Hadronic interaction and forward particle production is important to understand the air shower analyses

Covered by RHIC and LHC

Measured by atmospheric air shower
CR air shower and \sqrt{s} dependence

LHCf 2.76TeV and 7TeV data shows \sqrt{s} scaling of forward π^0

neutron

ISR (30-60GeV), PHENIX (200GeV) and LHCf (7-13TeV) data can test \sqrt{s} scaling of forward neutrons
SSA of forward particle production

1. Wider pT coverage with a single vs
2. First detection (or stricter upper limit) of forward π^0 asymmetry

Neutron asymmetry by PHENIX

π^0 asymmetry RHIC-IP12 vs=200GeV
($A_N = -0.024 \pm 0.031$)
C-A Operations FY17

May 8, 2017

<table>
<thead>
<tr>
<th>Program Element</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGS-Booster/EBIS Startup (break 12/23 - 1/3)</td>
<td></td>
</tr>
<tr>
<td>RHIC Cryo scrub & Cooldown to 45 K</td>
<td></td>
<td>RHIC Cryo weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHIC Cryo Cooldown/Warm-up</td>
<td></td>
</tr>
<tr>
<td>RHIC Cryo Operation</td>
<td></td>
</tr>
<tr>
<td>RHIC Cryo off</td>
<td></td>
</tr>
<tr>
<td>RHIC STAR</td>
<td></td>
</tr>
<tr>
<td>RHIC Research with Vs = 510 GeV/n pp</td>
<td></td>
<td>RHICf week</td>
</tr>
<tr>
<td>RHIC Research RHICf E= 255 GeV/n p</td>
<td></td>
</tr>
<tr>
<td>RHIC Research with Vs = 54.4 GeV/n AuAu</td>
<td></td>
</tr>
<tr>
<td>CeC PoP Experiment E= 40 GeV/n Au</td>
<td></td>
</tr>
<tr>
<td>NSRL (NASA Radiobiology)</td>
<td></td>
</tr>
<tr>
<td>BLIP (Isotopes)</td>
<td></td>
</tr>
<tr>
<td>BLIP (Other)</td>
<td></td>
</tr>
<tr>
<td>Shutdown (RHIC)</td>
<td></td>
</tr>
</tbody>
</table>

End date?

RHIC Cryo weeks

RHICf week
Collision rates in RHICf days

- Higher β^* (=8m) than usual RHIC operation
- Radial polarization (usually vertical) to maximize the single-spin asymmetry in vertical
- Luminosity $\sim 10^{31}$ cm$^{-2}$s$^{-1}$
Quick look (statistics)

RHICf DAQ rate
- Max rate was limited \(~1\text{kHz}\)
- High rate events were prescaled
- Low rate events were enhanced with special triggers
- Prescale factors were optimized from time to time

Total : 110M events

RHICf+STAR
RHICf (shower event)
RHICf (High-energy EM trigger)
RHICf (Type-I π^0 trigger)

Total acquisition time 1659min = 27.7 hours
Quick look (polarization & spectrum)

- Energy spectrum of EM-like showers in a 30 minutes run
- High-energy EM showers and π^0 were selectively triggered to compensate the limited DAQ speed.
- Polarization angle is 0 in usual RHIC operation (vertical pol)
- Radial polarization (90°) was required for RHICf operation
- Stable radial pol and asymmetry was observed by ZDC

Trigger efficiency MC taking into account the final experimental setups

Energy spectrum of EM-like showers in a 30 minutes run

- Trigger efficiency MC taking into account the final experimental setups
Quick look
(basic performance)

Hit maps of $>200\text{GeV}$ hadron–like events at different detector positions
\Rightarrow Determination of “zero degree”

Invariant mass of photon pairs
\Rightarrow 135 MeV peak by π^0

Correction factors considering the final alignment and RHIC energy range are in study.
Quick look (common run with STAR)

- Hadron-like (deep penetrating) showers were selected
- Anticorrelation between the RHICf raw (folded) energy and ZDC measured energy (in ADC unit) is confirmed
- (Anti)correlation only with West ZDC as expected => correct event matching
Ongoing Physics Analyses

- Production cross sections of photons and π^0
- A_N of very forward π^0

PHENIX, STAR $\sqrt{s}=200\text{GeV}$

PHENIX Collaboration, PRD 90, 012006 (2014)
Summary

• Operation of RHICf in RUN17 was successfully done
 • Special setup, $\beta^*=8$m and radial polarization
 • 4 fills and 27.7 hours of physics data taking
 • Common operation with STAR, 80% of RHICf triggers were recorded
• Good initial performance
 • π^0 identification
 • Beam center determination
 • Correct event matching with STAR
• Ongoing analyses
 • EM shower events => forward π^0 asymmetry

We appreciate supports by PAC, C-AD, STAR and PHENIX Collaborations
Backup
\[\pi \] production by different models at different \(\sqrt{s} \)

\[
\begin{align*}
\text{EPOS-LHC} & & \text{QGSJET-II-04} \\
\text{PYTHIA 6} & & \text{SIBYLL 2.3}
\end{align*}
\]

\(\sqrt{s} = 0.1, 1, 10 \text{TeV} \)

S. Ostapchenko, M. Bleicher, T. Pierog, and K. Werner, PRD 94, 114026 (2016)
Theoretical explanation

- Pion-\(a_1\) interference: results
 - The data agree well with independence of energy

- The asymmetry has a sensitivity to presence of different mechanisms, e.g. Reggeon exchanges with spin-non-flip amplitude, even if they are small amplitudes

\[
A_N \approx \frac{2 \text{Im}(fg^*)}{|f|^2 + |g|^2}
\]

\(f\) : spin non-flip amplitude
\(g\) : spin flip amplitude

FIG. 1: (Color online) Single transverse spin asymmetry \(A_N\) in the reaction \(pp \to nX\), measured at \(\sqrt{s} = 62, 200, 500\) GeV [1] (preliminary data). The asterisks show the result of our calculation, Eq. (38), which was done point by point, since each experimental point has a specific value of \(z\) (see Table I).

SSA of forward particle production

1. Measurement at $p_T < 0.3 \text{GeV}$ in a single \sqrt{s}
 • possible by RHICf because of its 1mm position resolution for neutrons
2. Measurement at $p_T > 0.3 \text{GeV}$ to know A_N evolution
 • possible by RHICf because of its wide p_T coverage required for cross section measurements
SSA of forward particle production

1. Measurement at $p_T<0.3\text{GeV}$ in a single \sqrt{s}
 - possible by RHICf because of its 1mm position resolution for neutrons
2. Measurement at $p_T>0.3\text{GeV}$ to know A_N evolution
 - possible by RHICf because of its wide p_T coverage required for cross section measurements