iTPC and eTOF status

Flemming Videbæk
BNL
STAR collaboration

Introduction
iTPC
iTPC Run 18 performance
eTOF
Installation & Schedule
Summary
iTPC Upgrade:
- Rebuilds the inner sectors of the TPC
- Continuous Pad Coverage
- Improves dE/dx (15-30%)
- Extends η coverage from 1.0 to 1.5
- Lowers p_T cut-in from 125 MeV/c to 60 MeV/c

eTOF Upgrade:
- Add CBM TOF modules and electronics (FAIR phase 0)
- -1.5 < η < -1.1
- Extend forward PID capabilities
Scope of iTPC Project

• 24 Inner sector modules
 – Al Strongbacks
 – Pad planes
 – Padplane joining
 – Multi Wire Proportional Chamber (MWPC) assembly
 – QA & Testing

• Readout Electronics
 – iFEE
 – iRDO

• Insertion Tooling and Installation
Mechanical

- Project started in March 2016
 - Fabrication of pad planes, strongback complete
 - The padplane precision bonding to strongback, sideboards mounting, trimming, CMM, and cleaning done at LBNL completed May 11 2018. Produced 27 good + 3 spares+two prototypes out of 36.
 - Initial production problems required us to fabricate strong backs, padplanes, etc. for an additional 6 sectors.
MWPC assembly at SDU

- Work in China – Shandong, USTC, SINAP
 - Two Prototypes of iTPC in 2016
 - Wire plane and assembly production 24+spares and assembly – Started May 2017
 - Sector test (uniformity, efficiency and linearity)
 - Shipping sector to BNL (last shipment July 2018)

- Supported by NSFC & MoST
The tests include HV burn-in, gain uniformity, and high intensity X-ray stability. The anode wire gain uniformity under G10 is <1.5% (better than 2% required), energy resolution is ~8.5% (in RMS, better than 10%) and the leakage current remains <500nA under strong X-ray test without trip or spark for hours each channel. Leak test.
Production Status

- SDU has produced 2 prototypes
- SDU has assembled 20 production sectors, and 2 with small issues
- Production of last 8 has started
- 8 production sectors at BNL, 4 more in shipping preparation
- Expect all sectors at BNL by August
Electronics

- Doubling # of channels per FEE card. 2 SAMPA per FEE. Have secured 4,000 SAMPA V3
- 55 FEEs per inner sector
- 16 FEEs per RD0
- 4 RDOs per inner sector
Actual 2017 installation

Unpacking and cover

Installed sector

Peeking into STAR

Lowering sector

Installation platform
Commissioning Status

- One sector was installed in October 2017
- The Run-18 physics program has been running since mid March.
- iTPC is routinely included in most of the runs
 - All firmware goals for Run 18 have been met; Including the following recent achievements:
 1) iTPC calibration runs: pedestal, gains
 2) 2D cluster finder: done, speed optimized, including tail suppression and gain/T0 corrections
 3) DAQ stability: running very stably after many firmware/software tweaks. We also have auto-recovery in place to get us out of possible SEUs and other error conditions.
Software Progress

• Integration of hit and tracking software getting well along. We have a group of experts and students working on this

• Event display has been prepared (the example shows just sector 20 tracks alone)

• First results of tracking of isobar collisions
Tracking results

- Comparing tracking of iTPC sector (20) vs. standard sector (24). (Sector identified by first hit position)
- We see the expected improvement in coverage in both η and p_T
End Cap Time-Of-Flight

- STAR and CBM-TOF group will install TOF in one side of STAR; part of FAIR Phase-0
- Provide TOF PID in $1.1<\eta<1.6$
- Operation experience for CBM effort

- 36 modules in 3 layers, Matched to 12 TPC sectors
- Long-strip MRPC readout
- Multiple hit probability < 7.4%
End Cap Time-Of-Flight

- STAR and CBM-TOF group plans to install TOF in one side of STAR; part of FAIR Phase-0
- Provide TOF PID in $1.1 < \eta < 1.6$
- Operation experience for CBM effort

36 modules in 3 layers, Matched to 12 TPC sectors
Long-strip MRPC readout
Multiple hit prob < 7.4%

Significant extension of PID beyond $y = 1$
Endcap TOF Status

• One sector with 3 modules was installed for Run 18
 – Integrated with STAR DAQ
 – Routinely read out in physics runs
 – Counter resolution of ~60 ps obtained

• Production of modules ongoing

• Complete installation in November 2018
Installation Planning

• iTPC activities
 – Need to remove RDO water manifolds form all sectors; FEEs can stay on outer sectors
 – Remove all electronic from inner sectors
 – Install 11 sectors East and 12 West, respectively
 – Installation platform has to be moved from east to west
 – Install water manifolds, FEE’s, RDO cabling
 – Check all connections, leakage, HV..

• This in addition to eTOF installation and all other shutdown activities, roll out/in, partial roll in/out

• STAR Technical Support Group, iTPC project have worked out detailed resource loaded shut down schedule including C-AD contributions
Key Installation Periods

<table>
<thead>
<tr>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
<th>January</th>
<th>February</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWPC production</td>
<td>TPC face preparation</td>
<td>Roll out preparation</td>
<td>Star Roll out</td>
<td>Install East sector</td>
<td>Prepare West</td>
<td>Services and electronics East</td>
<td>Install West sector</td>
<td>Star Roll in</td>
<td>Services West</td>
</tr>
<tr>
<td>RDO production</td>
<td>Fee Production and testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eTOF installation preparations</td>
<td>eTOF production and testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install eTOF</td>
<td>Install and test electronics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- STAR can be ready by end February for beam in the tight technically driven schedule
iTPC Risk assessment

• In 2016 the 3 highest risk identified for the iTPC project was
 – Wire mounting /construction of MWPC planes overall low to medium (technical, schedule)
 – Sector Insertion , (technical) overall Medium
 – Electronics (Schedule risk) overall Medium

• Through the extensive prototyping of sectors at SDU, installation of one sector for Run 18 using installation tooling and operating with close to production ready electronics these risk have been greatly reduced
Summary

• Production of inner sectors will complete in August and will be of good quality
• iTPC Electronics in production mode
• The one sector installed and its associated electronics was fully integrated into STAR DAQ, and requirements are met
• Installation Schedule between Run 18 and Run 19 is tight. It has been carefully planned with STSG and C-AD
• iTPC and eTOF will be ready by February 2019
Insertion Tooling

Insertion tooling needed for installation and for replacement of two outer bad sectors

Designed by Rahul Sharma, Ralph Brown and much input from LBNL, CERN
Towards KPP for electronics

1) UPP: Compatible with the DAQ-1000 Achieved
 5% deadtime at 1 kHz -- Met (we have 5%)
 20% deadtime at 2 kHz -- Met (we have 20% at
 2.15 kHz for ZrZr-200)

2) UPP: Operational electronics fraction
 <3% dead channels -- Met (we have 1.1 %)

3) KPP: Electronics noise
 <2 ADC channels -- Met (we have ~1 ADC)

4) KPP: electronics gain uniformity
 <10% uniformity -- Met (we have <2.5%)
1) 80 of required 120 MRPC counters have been produced in China.

2) 36 (of 36) completed 3-counter modules will arrive at BNL by November 1 for November installation.

3) electronics are completed or in production except for the GBTx board which is under test.

4) The support infrastructure being provided by BNL will be complete and installed by November 1.

5) The readout electronics will be installed and tested in December and January before cosmic ray testing in February.