Measurements of $\mu\mu$ pairs from charm, bottom, and Drell-Yan in p+p and p+Auat $\sqrt{s_{NN}}$ = 200 GeV with PHENIX at RHIC

Yue Hang Leung **Stony Brook University**

Nuclear Physics Seminar BNL, 06-19-2018

- Introduction
- Heavy flavor production
- Probing cold nuclear matter effects
- Summary

$p+p \rightarrow No$ Nuclear Matter

- Baseline measurement
- Test pQCD calculations
- p/d+A → Cold Nuclear Matter Initial state effects Final state effects

A+A → Quark gluon plasma Hot and cold nuclear matter effects Heavy flavor produced at the early stages of the collision

 Classic probe to study cold and hot nuclear matter effects

$p+p \rightarrow No$ Nuclear Matter

- Baseline measurement
- Test pQCD calculations
- p/d+A → Cold Nuclear Matter Initial state effects Final state effects
- A+A → Quark gluon plasma Hot and cold nuclear matter effects

Heavy flavor produced at the early stages of the collision

 Classic probe to study cold and hot nuclear matter effects

- Modification of PDFs in nuclei
 - (Anti-) shadowing
- Other initial/final state effects
 - Multiple scattering
 - Energy loss
 - Flow

Hard scattering

• time

Hadron decays

$p+p \rightarrow No$ Nuclear Matter

- Baseline measurement
- Test pQCD calculations
- p/d+A → Cold Nuclear Matter Initial state effects Final state effects
- A+A → Quark gluon plasma Hot and cold nuclear matter effects

Hard scattering

Heavy flavor produced at the early stages of the collision

 Classic probe to study cold and hot nuclear matter effects

$p+p \rightarrow No$ Nuclear Matter

- Baseline measurement
- Test pQCD calculations
- p/d+A → Cold Nuclear Matter Initial state effects Final state effects
- A+A → Quark gluon plasma Hot and cold nuclear matter effects

Heavy flavor produced at the early stages of the collision (?)

• Classic probe to study cold and hot nuclear matter effects

Need good understanding HF in small systems to interpret A+A data!!

The PHENIX detector

Measuring dileptons with PHENIX

Measuring dileptons with PHENIX

Why dileptons?

Charm-bottom separation without reconstruction of secondary vertex

- Charm/bottom dominates different regions of dilepton phase space
- Opportunity to study pair correlations

I. Studying heavy flavor production in p+p collisions 2. Probing cold nuclear matter effects in p+A collisions

Studying heavy flavor production in p+p collisions Probing cold nuclear matter effects in p+A collisions

Heavy flavor event generators

- Shower Monte Carlos
 - e.g. PYTHIA, HERWIG
 - Leading order matrix elements
 - NLO effects emulated via parton shower approach
 - Separate calculations for each process
 - Ignores interference effects

• NLO + PS

- e.g. MC@NLO, POWHEG
- NLO matrix elements
- Interfaced to shower Monte Carlos like PYTHIA, HERWIG
- Different methodologies (e.g. negative weights, $p_{\rm T}$ veto) to avoid double counting

Heavy flavor correlations

- Azimuthal correlations a unique probe to study heavy flavor production
 - LO flavor creation (FC)
 - strong back-to-back peak
 - NLO flavor excitation (FE)/ gluon splitting (GS) processes
 - broader azimuthal angle distributions
 - Measuring azimuthal correlations
 - can disentangle different heavy flavor production mechanisms

Production and Hadronization of Heavy Quarks Eur.Phys.J.C17: 137-161,2000

Heavy flavor correlations

- Azimuthal correlations a unique probe to study heavy flavor production
 - LO flavor creation (FC)
 - strong back-to-back peak
 - NLO flavor excitation (FE)/ gluon splitting (GS) processes
 - broader azimuthal angle distributions
 - Measuring azimuthal correlations
 - can disentangle different heavy flavor production mechanisms
- Study energy dependence of HF production
 - GS contribution increases as beam energy increases

Production and Hadronization of Heavy Quarks Eur.Phys.J.C17: 137-161,2000

bb azimuthal correlations in pp collisions at $\sqrt{s}=1.8$ TeV

Mid-mid rapidity HF pairs in p+p, 200 GeV

Mid-mid rapidity HF pairs in p+p, 200 GeV

Mid-fwd rapidity HF pairs in p+p, 200 GeV

Mid-fwd rapidity HF pairs in p+p, 200 GeV

to the $e-\mu$ correlations in this analysis.

Mid-fwd rapidity HF pairs in p+p, 200 GeV

First measurement of the dimuon continuum at RHIC

Unlike-sign pairs

arXiv:1805.02448

6/14/18

Yue Hang Leung - Nuclear Physics Seminar, BNL

Dimuon cocktail

- Hadron decays
 - –η,η'
 - $-\phi, \rho, \omega$
 - $-J/\psi$, ψ (2s)
 - Y(1s,2s,3s)
 - K⁰, K[±], π^{\pm}
- Heavy flavor
 - Charm
 - Bottom
- Drell-Yan

Input rapidity/p_T distributions constrained by existing data whenever possible.

Dimuon cocktail

• Hadron decays

- –η, η'
- $-\phi, \rho, \omega$
- $J/\psi, \psi(2s)$
- Y(1s,2s,3s)
- -<u>K⁰, K[±], π^{\pm} </u>
- Heavy flavor
 - <u>Charm</u>
 - <u>Bottom</u>
- Drell-Yan

Input rapidity/p_T distributions constrained by existing data whenever possible.

Simulations run through GEANT4 and reconstruction chain.

Normalizations of <u>underlined</u> components obtained via mass- p_T fit.

First measurement of the dimuon continuum at RHIC

bb cross-section; comparison with other RHIC measurements

High mass like-sign pairs is dominated by dimuon pairs from bottom:

> Extrapolate to 4π phase space

Consistent with other RHIC measurements at 200 GeV

 Data is consistent with FONLL within large theoretical uncertainties

• Data is 2x from central FONLL value

Measuring dimuons

Unlike-sign pairs

Measuring dimuons

Unlike-sign pairs

Measuring dimuons

Unlike-sign pairs

Charm and bottom pair p_T (signal extraction)

• Subtract cocktail components other than signal pairs (charm/bottom) from data as a function of pair p_T .

Systematic uncertainties

- Multiple backgrounds sources
 - →Multiple systematic uncertainties sources
 - Most dominant source:
 Input pion/kaon spectra
 - No measurement at 1.2<| η |<2.2 $\frac{1}{1}$

Charm and bottom pair p_T

- Extract charm and bottom in separate kinematic regions
- Charm and bottom dimuon pair p_T compared to PYTHIA Tune A and POWHEG
 - Theoretical curves normalized with cross-sections from fitting technique

Charm and bottom pair p_T

- Extract charm and bottom in separate kinematic regions
- Charm and bottom dimuon pair p_T compared to PYTHIA Tune A and POWHEG
 - Theoretical curves normalized with cross-sections from fitting technique

Charm and bottom pair p_T

- Extract charm and bottom in separate kinematic regions
- Charm and bottom dimuon pair p_T compared to PYTHIA Tune A and POWHEG
 - Theoretical curves normalized with cross-sections from fitting technique

Heavy flavor dielectrons in p+p, I3TeV

arXiv:1805.04407

Yue Hang Leung - Nuclear Physics Seminar, BNL

Charm and bottom azimuthal correlations

- Extract charm and bottom in separate kinematic regions
- Charm and bottom dimuon $\Delta \phi$ compared to PYTHIA Tune A and POWHEG
 - Theoretical curves normalized with cross-sections from fitting technique

Charm and bottom azimuthal correlations

- Extract charm and bottom in separate kinematic regions
- Charm and bottom dimuon $\Delta \phi$ compared to PYTHIA Tune A and POWHEG
 - Theoretical curves normalized with cross-sections from fitting technique

Charm and bottom azimuthal correlations

- Extract charm and bottom in separate kinematic regions
- Charm and bottom dimuon $\Delta \phi$ compared to PYTHIA Tune A and POWHEG
 - Theoretical curves normalized with cross-sections from fitting technique

Extrapolating beyond the measured phase space

- Theoretical curves normalized with same cross-sections from $\mu\mu$ analysis
- ee and eµ yields are dominated by charm

- Fit pair creation (PC), flavor excitation (FE) and gluon splitting (GS) shapes to data (D)
 - $cc \rightarrow e^+e^-, e^+\mu^-, \mu^+\mu^-$
 - $-bb \rightarrow \mu^{\pm}\mu^{\pm}$
- Bayesian approach
 - Nuisance parameters account for systematic uncertainties
 - Uniform prior
 - 0 < F_{PC}, F_{FE}, F_{GS} < 1
 - $F_{PC} + F_{FE} + F_{GS} = 1$
 - F_{PC} , F_{FE} , F_{GS} are the relative contributions of PC, FE and GS in 4π respectively.
 - Monte-Carlo sampling

Bayesian analysis: The assumptions

• PYTHIA Tune A settings

- Initial state/final state radiation (PARP(67) = 4.0)
- Fragmentation (PARJ(21) = 0.36)
- Quark masses
- Tune A describes multiple observables from CDF to RHIC energies well
- Interference between production processes

 Underlying assumption of PYTHIA

Open to suggestions!

 68% and 95% credible intervals constructed from posterior probability density

Yue Hang Leung - Nuclear Physics Seminar, BNL

 68% and 95% credible intervals constructed from posterior probability density

 68% and 95% credible intervals constructed from posterior probability density

Implications

- Based on PC/FE/GS shapes from PYTHIA Tune A:
 - Dominant production mechanism for bottom at 200 GeV is leading order PC
 - Small gluon splitting contribution at RHIC energies
- Bottom may be utilized to study initial gluon dynamics at RHIC energies
- Clean interpretation of bottom measurements at RHIC energies
 - Gluon splitting complicate interpretation of heavy flavor A+A data
- Similar measurements in p+A: probe process dependent cold nuclear matter effects

 Contrasts to LHC energies where NLO processes dominate

I. Studying heavy flavor production in p+p collisions

2. Probing cold nuclear matter effects in p+A collisions

Mid-mid rapidity HF pairs in d+Au, 200 GeV

 No nuclear modification observed in d+Au to within experimental uncertainties

24

Mid-fwd rapidity HF pairs in **d+Au, 200 GeV**

- Suppression of awayside peak in d+Au
- Shadowing? Multiple scattering? Gluon saturation? Flow?

PhysRevC.89.034915

Mid-fwd rapidity HF pairs in d+Au, 200 GeV

Bottom like-sign dimuons in p+Au (signal extraction)

- p+p analysis method applied to p+Au collisions at 200 GeV.
- Modification of hadronic background estimated from forward hadron measurements.

Pair p_T

Azimuthal opening angle

6/14/18

Bottom like-sign dimuons in p+Au (signal extraction)

- p+p analysis method applied to p+Au collisions at 200 GeV.
- Modification of hadronic background estimated from forward hadron measurements.

Bottom azimuthal correlations in p+Au

- Integrated yield of dimuons from bb in measured phase space in p+Au consistent with binary scaled p+p
- No modification of azimuthal correlations within uncertainties

Bottom pair p_T in p+Au

- Small enhancement at low pair \mathbf{p}_{T}
- Followed by decreasing trend

Cold nuclear matter effects at forward/backward

Enhancement of μμ from bottom not described by EPPS16

$\mu\mu$ from bottom (<p_{T, µ}>~2.5 GeV/c)

Cold nuclear matter effects at forward/backward

Enhancement of $\mu\mu$ from bottom not described by EPPS16

Common mechanism behind modifications for charm/charged hadrons?

Multiple scattering of partons within nuclear medium?

collisional energy loss/angular broadening

charged hadrons

0-100% centrality

An unexpected opportunity

Unlike-sign pairs

An unexpected opportunity

Unlike-sign pairs

Drell-Yan: probing initial state effects

- Not affected by final state interactions
- p+A: clean probe of initial state effects

` ≥b

5

- (anti-)Shadowing
- energy loss/scattering of quarks passing through nucleus

7.5

Mass

Line: Shadowing calculations (EKS98, MRST) 6/15/18

Drell-Yan: probing initial state effects

- Not affected by final state interactions
- p+A: clean probe of initial state effects
 - (anti-)Shadowing

6/16/18

scattering/energy loss of quarks passing through nucleus

Yue Hang Leung - Nuclear Physics Seminar, BNL

Drell-Yan (signal extraction, p+p)

p+p Drell-Yan cross-section, 200 GeV

Summary and prospects

- Presented first measurement of dimuon continuum at p+p and p+Au
 200 GeV at RHIC.
- p+p:
 - bb cross-section about 2x FONLL central value.
 - Bayesian analysis based on PYTHIA tune A:
 - Indicates that dominant source of bb production is leading order pair creation at 200 GeV.
 - Small fraction of gluon splitting in bottom allows clean interpretation of bottom HI data at RHIC energies.
- p+Au:
 - Bottom yield at low pair p_{T} shows small enhancement, followed by decreasing trend.
- DY in p+Au: probe initial state effects, nPDFs.
- cc correlations in p+Au: probe cold nuclear matter effects.

Yue Hang Leung - Nuclear Physics Seminar, BNL

Heavy quarks can be sensitive to various effects:

Parton distribution functions in nuclei are modified compared to those in nucleon

 $c\overline{c}$

Scattering with nuclear matter:

(Initial-state or final-state interaction)

- transverse momentum broadening
- energy loss
- break-up of bound states

co-movers

Cold nuclear matter effects with heavy flavor at 200 GeV

 Not well understood Details on the Bayesian analysis

• Generate distributions for FC, FE, GS ($Y_{\alpha,i,j}$) separately.

 $T_{i,j}(\mathbf{F},\sigma_{HF}) = \sigma_{HF} \sum F_{\alpha} Y_{\alpha,i,j},$

- F_{α} is the fraction of the α process in 4π phase space.
- $\sigma_{\rm HF}$ is the total cross-section.
- $T_{i,j}$ is the predicted yield for the jth bin in the ith data set, for a certain set of fractions F_{α} and total cross-section σ_{HF} .
- Introduce nuisance parameters n, for each source of systematic uncertainty.

$$\chi^2 = \sum_{i} \sum_{j} \sum_{k} \left[\frac{D_{i,j} - T_{i,j}(\mathbf{F}, \sigma_{HF}) + n_{i,k} \sigma_{i,j,k}^{sys}}{\sigma_{i,j}^{stat}} \right]^2,$$

Details on the Bayesian analysis

- **Bayes' rule** $P(\mathbf{D}|\mathbf{F}, \sigma_{\mathrm{HF}}, \mathbf{n}) \cdot P(\mathbf{F}, \sigma_{\mathrm{HF}}, \mathbf{n})$ $P(\mathbf{F}, \sigma_{ ext{HF}}, \mathbf{n} | D)$ Likelihood: $0 < F_{PC} < 1$, Prior: $0 < F_{FE} < 1$, $0 < F_{GS} < 1$, Evidence: Constant factors, unimportant for current analysis $F_{PC}+F_{FE}+F_{GS}=1.$
- σ_{HF} constrained by fitting to data
- Sample over n to obtain $P(\mathbf{F}|D)$

Fitting in mass- $p_T(p+p)$

Unlike-sign pairs

Fitting in mass- p_T (p+Au)

Au-going

p-going

Lepton-pair continuum physics

Lepton-pair continuum physics

Drell-Yan process

Not affected by final state interactions

1.1

1.0

0.9

 $\eta = 0$

 $p_T (\text{GeV})$

Yue Hang Leung - Nuclear Physics Seminar, BNL

 $p_T (\text{GeV})$

 $p + Au @ \sqrt{s} = 0.2$ TeV, CT10nlo

 $\eta = 2$