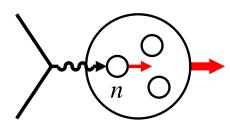
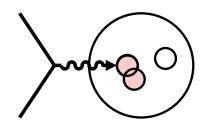
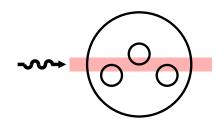

Light ion physics with forward detection at EIC

C. Weiss (JLab), Forward Physics and Instrumentation, CFNS Stony Brook, 17-Oct-2018




EIC simulations: JLab 2014/15 LDRD project W. Cosyn, V. Guzey, D. Higinbotham, Ch. Hyde, K. Park, P. Nadel-Turonski, M. Sargsian, M. Strikman, C. Weiss [Webpage] + ongoing theoretical research


- Light-ion phyiscs with EIC Objectives and challenges
- Spectator tagging with deuteron

 High-energy process ↔ low-energy stucture
 Free neutron from on-shell extrapolation
 Tagging with polarized deuteron
 Recent: Final-state interactions, diffraction
- Coherent processes with light nuclei
 Quark/gluon spatial distributions
 Dynamics: Nuclear shadowing etc.
- Forward detection with EIC]

Light ions: Physics objectives

[Nucleus rest frame view]

• Neutron structure

Flavor decomposition of PDFs/GPDs/TMDs, singlet vs. non-singlet QCD evolution, polarized gluon

Eliminate nuclear binding, non-nucleonic DOF!

• Nucleon interactions in QCD

Nuclear modification of quark/gluon densities Short-range correlations, non-nucleonic DOF QCD origin of nuclear forces

Associate modifications with interactions!

• Coherent phenomena in QCD

Coherent interaction of high–energy probe with multiple nucleons, shadowing, saturation

Identify coherent response!

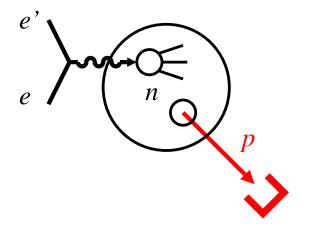
Common challenge: Many possible nuclear configurations during high-energy process. Need to "control" configurations!

Light ions: Deuteron and spectator tagging

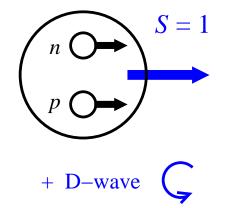
pn wave function simple, known well incl. light-front WF for high-energy procs

Neutron spin-polarized

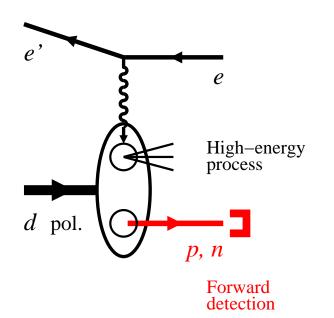
 $\begin{array}{l} \mbox{Intrinsic } \Delta \mbox{ isobars suppressed by isospin} = 0 \\ |\mbox{deuteron}\rangle = |pn\rangle + \epsilon |\Delta\Delta\rangle \mbox{ negligible} \\ \mbox{3He spin structure distorted by } \Delta' \mbox{s} \\ \mbox{Guzey, Strikman, Thomas et al } 01 \end{array}$


• Spectator nucleon tagging

Identifies active nucleon


Controls configuration through recoil momentum: Spatial size, S \leftrightarrow D wave

Typical momenta \sim few 10 – 100 MeV (rest frame)


Tagging in fixed-target experiments CLAS6/12 BONUS, recoil momenta p= 70-150 MeV JLab12 ALERT, Hall A

[Nucleus rest frame view]

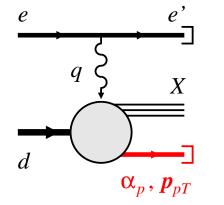
Light ions: Deuteron and spectator tagging

$$p_{p\parallel} = \frac{1}{2} \left[1 + \mathcal{O}\left(\frac{p_p[\text{rest}]}{m}\right) \right]$$

[Collider frame view]

• Spectator tagging with colliding beams

Spectator nucleon moves forward with approx. $1/2 \mbox{ ion beam momentum}$


Detection with forward detectors integrated in interaction region and beams optics LHC pp/pA/AA, Tevatron $p\bar{p}$, RHIC pp, ultraperiph. AA

Advantages over fixed-target
 No target material, *p*_p[rest] → 0 possible
 Potentially full acceptance, good resolution
 Can be used with polarized deuteron

Forward neutron detection possible

• Unique physics potential

Tagging: Cross section and observables

 $\frac{d\sigma}{dxdQ^{2}(d^{3}p_{p}/E_{p})} = [\text{flux}] \left[F_{Td}(x, Q^{2}; \alpha_{p}, p_{pT}) + \epsilon F_{Ld}(..) + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_{p} F_{LT,d}(..) + \epsilon \cos(2\phi_{p}) F_{TT,d}(..) + \epsilon \sin(2\phi_{p}) F_{TT,d}(..)$

 \bullet Conditional DIS cross section $e+d \rightarrow e' + X + p$

Structure/response functions in frame $oldsymbol{q} \parallel oldsymbol{p}_d$

Proton light-front momentum $~p_p^+=lpha_p p_d^+/2,~oldsymbol{p}_{pT}$

 $\longleftrightarrow \ \ \, \boldsymbol{p}_p \text{ in rest frame} \\ p_{p\parallel}, \ \ \, \boldsymbol{p}_{p\perp} \text{ in collider frame} \\$

Special case of semi-inclusive DIS — target fragmentation QCD factorization Trentadue, Veneziano 93; Collins 97

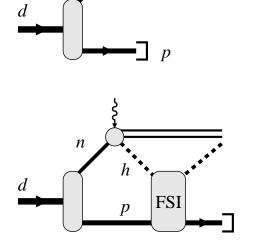
No assumptions re nuclear structure, $A = \sum N$, etc.

Tagging: Theoretical description

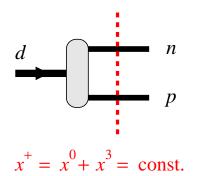
• Light-front quantization

High-energy scattering probes nucleus at fixed light-front time $x^+ = x^0 + x^3 = \text{const.}$

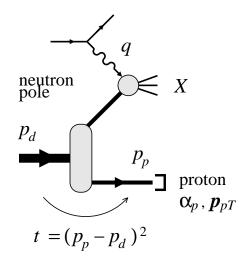
Deuteron LF wave function $\langle pn|d \rangle = \Psi(\alpha_p, \boldsymbol{p}_{pT})$

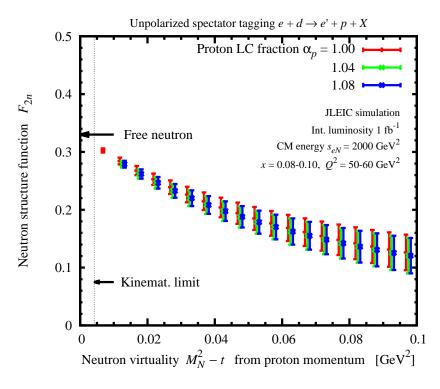

Permits matching nuclear ↔ nucleonic structure Conserves LF momentum, baryon number Frankfurt, Strikman 80's

Low-energy nuclear structure, cf. non-relativistic theory!


• Composite description

Impulse approximation: DIS final state and spectator nucleon evolve independently


Final-state interactions: Part of DIS final state interacts with spectator, transfers momentum



X

Tagging: Free neutron structure

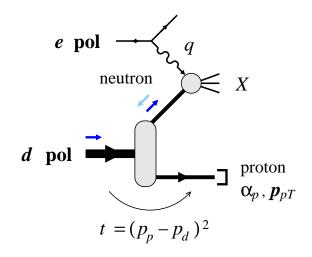
• Extract free neutron structure

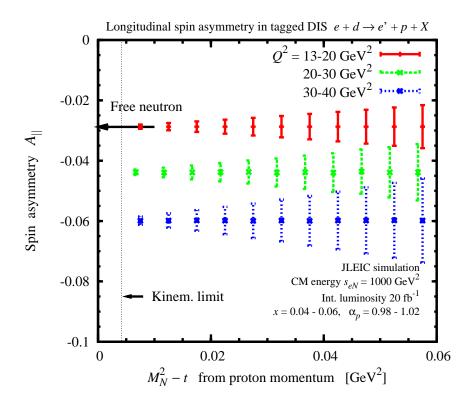
Proton momentum defines neutron virtuality $t - M_N^2 = -2|{m p}_p({\rm rest})|^2 + t_{\min}$

Free neutron at pole $t - M_N^2 = 0$: On-shell extrapolation

Eliminates nuclear binding effects and FSI Sargsian, Strikman 05

• Precise measurements of F_{2n}


 F_{2n} extracted with few-percent accuracy at $x\gtrsim 0.1$


Uncertainty mainly systematic LDRD project: Detailed estimates

Non-singlet $F_{2p} - F_{2n}$, sea quark flavor asymmetry $\bar{d} - \bar{u}$

7

Tagging: Neutron spin structure

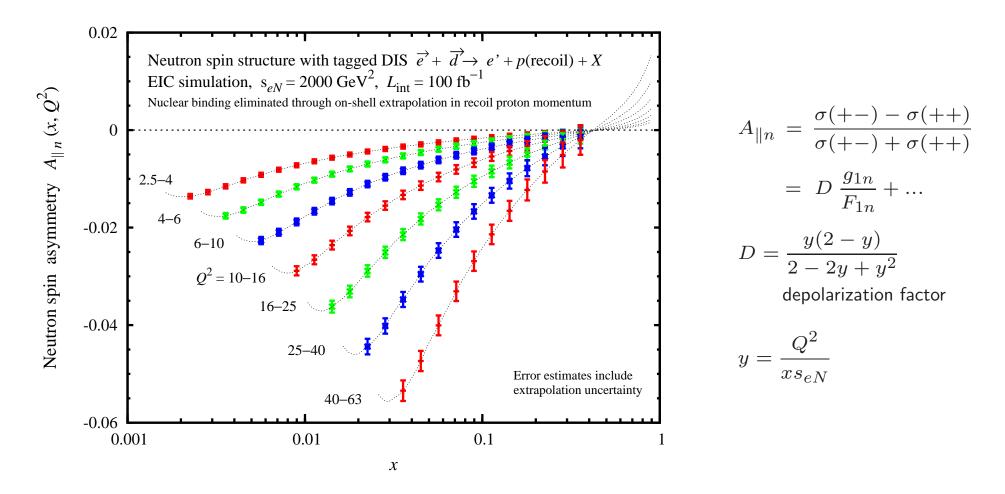
• Neutron spin structure with pol deuteron and proton tagging

On-shell extrapolation of asymmetry

D-wave suppressed at $p_p(rest) = 0$: Neutron 100% polarized

• Systematic uncertainties cancel

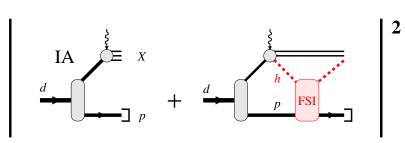
Weak off-shell dependence of asymmetry

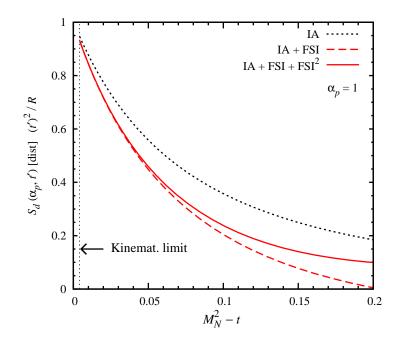

Momentum smearing/resolution effects largely cancel in asymmetry

• Statistics requirements

Physical asymmetries \sim 0.05-0.1, effective polarization $P_eP_D\sim 0.5$

Possible with int lumi \sim few 10 fb $^{-1}$


Tagging: Neutron spin structure II



• Precise measurement of neutron spin structure

Wide kinematic range: Leading \leftrightarrow higher twist, nonsinglet \leftrightarrow singlet QCD evolution Parton density fits: Flavor separation $\Delta u \leftrightarrow \Delta d$, gluon spin ΔG Nonsinglet $g_{1p} - g_{1n}$ and Bjorken sum rule

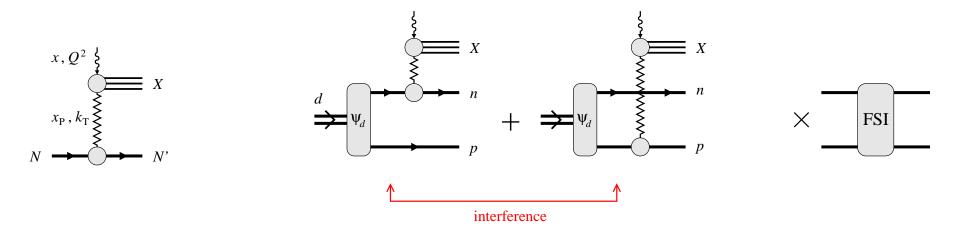
Tagging: Final-state interactions

• FSI mechanism $(x \sim 0.1)$

Slow hadrons in DIS final state: Neutron fragmentation, $p_h \sim 1-2$ GeV (rest frame)

Interact with spectator proton

Change spectator momentum distribution, not change inclusive cross section – closure


• FSI effects calculated

Sizable effects at $p_p \sim$ few 100 MeV

Vanish at $t - M_N^2 \rightarrow 0$, on-shell extrapolation not affected

Interesting aspects: Angular dependence, x-dependence, spin effects Strikman, Weiss, PRC97 (2018) 035209 [INSP]

Tagging: Diffractive DIS at small x

• Diffraction in nucleon DIS at $x \ll 0.1$

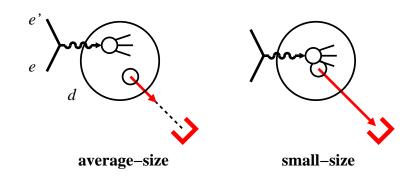
Nucleon remains intact, recoils with $k \sim$ few 100 MeV (rest frame) Detailed studies at HERA: QCD factorization, diffractive PDFs

• Shadowing in deuteron DIS

Diffraction can happen on neutron or proton: QM interference

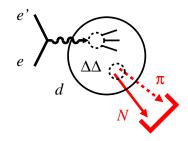
Reduction of cross section compared to IA — shadowing. Leading-twist effect. Review Frankfurt, Strikman, Guzey 12. Hints seen in J/ψ production on nuclei in UPCs at LHC.

• Diffraction and shadowing in tagged DIS


Differential studies as function of recoil momentum

Large FSI effects. Outgoing pn scattering state must be orthogonal to d bound state $_{\rm Guzey,\ Strikman,\ CW;\ in\ preparation}$

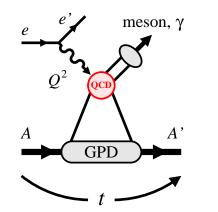
Tagging: Applications and extensions

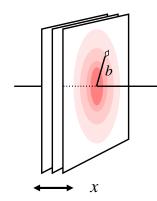

• Tagged EMC effect

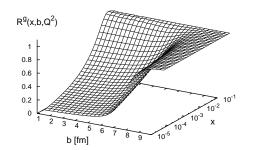
What momenta/distances cause modification? Connection with NN short-range correlations? FSI effects large — need theory, data

• Tagging Δ isobars

Tagged DIS $e + d \rightarrow e' + \pi + N$, reconstruct Δ Partonic structure of non-nucleonic DoF




• Tagging with complex nuclei A>2


Test isospin dependence and/or universality of bound nucleon structure

(A-1) ground state recoil, e.g. 3He (e, e' d) X Ciofi, Kaptari, Scopetta 99; Kaptari et al. 2014 Theoretically challenging, cf. experience with quasielastic breakup JLab Hall A

Coherent processes

• Hard exclusive processes

QCD factorization theoremCollins, Frankfurt, Strikman 96Generalized parton distributions $\langle A' | O[\text{Twist-2}] | A \rangle$

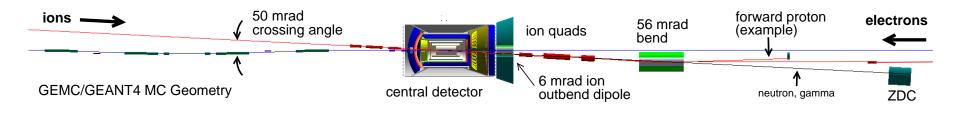
Transverse distribution of quarks/gluons in nucleus

• Explore structure and dynamics

GPDs for spin-1 2 H, spin-1/2 3 He/ 3 H, spin-0 4 He

Large x: Nuclear modifications cf. EMC effect, nucleon spin flip transitions

Small x: Nuclear shadowing as function of impact parameter \leftrightarrow thickness


Guzey et al 09

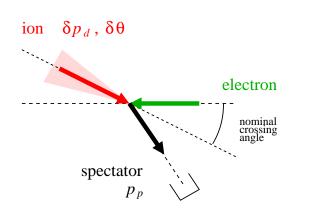
Forward ion detection

Light ions $A \lesssim 12$: Positive detection Heavy ions: Veto nuclear breakup

Caldwell, Kowalski 09

EIC forward detection

• Forward detector integrated in IR and beam optics


 \rightarrow this meeting

Protons/neutrons/fragments/ions travel through ion beam quadrupole magnets

Dispersion generated by dipole magnets

Detection using forward detectors — Roman pots, ZDCs

Tagging studies: Full acceptance, proton momentum resolution longit $\delta p/p \sim 10^{-3}$, angular $\delta \theta \sim 0.2$ mrad JLEIC: P. Nadel-Turonski, Ch. Hyde et al.

• Intrinsic momentum spread in ion beam

Transverse momentum spread $\sigma \sim$ few 10 MeV

Smearing effect $p_{pT}(vertex) \neq p_{pT}(measured)$, partly corrected by convolution

Dominant systematic uncertainty in tagged neutron structure measurements. Correlated, x and $Q^2\text{-indpendent}.\ _{\rm JLab}\ _{\rm LDRD}$

Summary

- Forward detection of nuclear final states breakup/coherent significantly extends physics reach of eA(light) scattering at EIC
- Spectator tagging with deuteron overcomes main limiting factor of nuclear DIS: Control of nuclear configurations during high-energy process

Free neutron from on-shell extrapolation, eliminates nuclear binding and D-wave JLab 2014/15 LDRD Project [Webpage]

Tagged EMC effect, nuclear shadowing, other applications

Theory well developed, separate high-energy process \leftrightarrow low-energy structure

Extension to A > 2 possible but challenging, requires substantial nuclear structure input Workshop "Polarized light ion physics with EIC", 5-9 Feb 2018, Ghent U, Belgium [Webpage]

• Coherent nuclear processes create image of nucleus directly in terms of fundamental quark/gluon degrees of freedom

Dynamics of nuclear modifications at large x, shadowing at small x

• Need forward detector to make it work – coverage, resolution, various Z/A