The role of diffractive process in the inclusive asymmetry at almost zero degree in transversely polarized proton + proton collision at RHIC

Itaru Nakagawa (RIKEN)
for the RHICf Collaboration

Transverse Single Spin Asymmetry

Pioneering Transverse Single Spin Assymmetry

Energy Dependence of A_{N}

Naïve Theory Prediction:
Small in high energy
(Kane, Pumplin, Repko, PRL 41, 1689-1692 (1978))

$$
A_{N} \propto \frac{m_{q}}{\sqrt{s}} \quad \begin{aligned}
\mathrm{A}_{N} \mathrm{O}\left(10^{-4}\right) \text { Theory } \\
\text { AGS } 22 \mathrm{GeV} \text { beam }
\end{aligned}
$$

PRL36, 929 (1976)

Asymmetry still persists even in high energy!

Initial State Effect

Final State Effect

Sivers Mechanism

+ higher twist mechanism

pQCD interpretation

Initial State effect or Final State Effect?
Remain Unsolved
γ-multiplicity dependence of Forward $(2<\eta<4) \pi^{0} A_{N}$

Rapidity Dependence of A_{N}

Rapidity Dependence of A_{N}

Hadron Production Mechanism

$p^{\dagger+p}$ Forward Neutron A_{N}

Data are well reproduced by the interference between π and a_{1} Reggeon

LHCf -> RHICf

Solenoidal $\mathbf{T}_{\text {racker }} \mathbf{A}_{\mathbf{t}} \mathbf{R}_{\text {HIC : }}$ - $1<\boldsymbol{\eta}<1,0<\phi<2 \pi$

n, γ
Longitudinal size (mm)

$2 \mathrm{~cm} \times 2 \mathrm{~cm}$

Photon event

Neutron event

(Adriani et al., PLB, 2018)
Invariant mass of photon pair
Peak @ 135MeV from π^{0} decay events

RHICf Experimental Setup

RHICf	ZDC + SMD
Sampling $\left(\lambda_{I}=1.7\right)$	Total Absorption $\left(\lambda_{I}=5.1\right)$
$S=4 \mathrm{~cm} \times 4 \mathrm{~cm}$ $+2 \mathrm{~cm} \times 2 \mathrm{~cm}$	$\mathrm{~S}=10 \mathrm{~cm} \times 10 \mathrm{~cm}$
$\Delta E_{\mathrm{n}} \sim 35 \%$	$\Delta E_{\mathrm{n}} \sim 18 \%$
$\Delta x_{n} \sim 0.1 \mathrm{~cm}$	$\Delta x_{n} \sim 1 \mathrm{~cm}$

RHICf Experiment : June 2017

- π^{0} peak with $\sim 10 \mathrm{MeV} / c^{2}$ width
- 3σ region selected as π^{0} candidates
π^{0} Performance
- $p_{T}<1.0 \mathrm{GeV} / \mathrm{c}$
- $0.2<x_{F}<1.0$

Data analysis by Minho Kim

π^{0} Asymmetry Preliminary Results

Large Asymmetry was observed $p_{T}<1 \mathrm{GeV}$.

Neutron p_{T} coverage extention

Explore the proton spin in diffractive and transition to pQCD regime.

Extend p_{\top} region up to 1.2 GeV

$p_{T}(G e V)$	$\mathrm{N}\left(\times 10^{3}\right)$	$\delta \mathrm{A}$
$0.0-0.1$	2,310	0.0013
$0.1-0.2$	2,570	0.0012
$0.2-0.3$	1,710	0.0015
$0.3-0.4$	2,190	0.0014
$0.4-0.5$	1,210	0.0018
$0.5-0.6$	1,130	0.0019
$0.6-0.7$	402	0.0032
$0.7-0.8$	260	0.0039
$0.8-1.2$	104	0.0062

Summary

- Forward transverse single spin asymmetry has been considered to be sensitive to the orbital angular momentum.
- Forward πA_{N} has been studied in PQCD framework, but recent data indicate possibility of soft process may be (partially) playing a role.
- New p0 results showed large asymmetry pT<1GeV where diffractive process expected to dominate.
- RHICf experiment is expected to interconnect asymmetries between hard (pQCD) and soft (diffractive) nature.

RHICf Collaboration

Y. Goto, I. Nakagawa, R. Seidl (RIKEN) J. S. Park (Seoul National Univ.) B. Hong, M. H. Kim (Korea Univ.) K. Tanida (JAEA)
Y. Itow, H. Menjo, K. Sato, M. Ueno,
Q. D. Zhou, M. Ueno (Nagoya Univ.)
T. Sako (ICRR, Univ. of Tokyo)
K. Kasahara, T. Suzuki, S. Torii (Waseda Univ.)
N. Sakurai (Tokushima Univ.)
O. Adriani, E. Berti, L. Bonechi,
R. D'Alessandro (INFN Firenze)
A. Tricomi (INFN Catania)

Backup slides

Goal of RHICf Spin

Measure transverse single spin asymmetry of π^{0} and neutron at zero degree. Explore the proton spin in diffractive and transition to PQCD regime.

> Observed asymmetry look scaling with $p_{\mathrm{T},}$ but what about collision energy dependence?

The statistically insufficient existing data.

Goal of RHICf Spin

Measure transverse single spin asymmetry of π^{0} and neutron at zero degree. Explore the proton spin in diffractive and transition to PQCD regime.

Goal of RHICf Spin

Measure transverse single spin asymmetry of π^{0} and neutron at zero degree. Explore the proton spin in diffractive and transition to PQCD regime.

\leftarrow Challenge to understand with existing TSSA data ($2<\eta<4$) altogether.

