The role of diffractive process in the inclusive asymmetry at almost zero degree in transversely polarized proton + proton collision at RHIC

Itaru Nakagawa (RIKEN) for the RHICf Collaboration

Transverse Single Spin Asymmetry

Pioneering Transverse Single Spin Assymmetry

0.8

Energy Dependence of A_N

Initial State Effect

k_{т,q}

Sivers Mechanism

transverse-momentum dependence of partons inside the transversely-polarized nucleon

quark proton

Final State Effect

Collins Mechanism

correlation between transverselypolarized nucleon and transversely polarized partons inside

+ higher twist mechanism

κ_{τ,π}

pQCD interpretation

Initial State effect or Final State Effect?

Remain Unsolved

γ -multiplicity dependence of Forward (2< η <4) $\pi^0 A_N$

7

Rapidity Dependence of A_N

Phys. Lett. B650 (2007) 325.

	forward	backward
neu	tron $-0.090 \pm 0.006 \pm 0.009$	$0.003 \pm 0.004 \pm 0.003$
pho	$ton -0.009 \pm 0.015 \pm 0.007$	$-0.019 \pm 0.010 \pm 0.003$
π^0	$-0.022\pm0.030\pm0.002$	$0.007 \pm 0.021 \pm 0.001$

TABLE I: Asymmetries measured by the EMCal. The errors are statistical and systematic, respectively. There is an additional scale uncertainty, due to the beam polarization uncertainty, of $(1.0^{+0.47}_{-0.24})$.

Hadron Production Mechanism

p^+p Forward Neutron A_N

Data are well reproduced by the interference between π and a_1 Reggeon

LHCf -> RHICf

4cm x 4cm

2cm x 2cm

 $\Delta x_n \sim 0.1 \text{cm}$

 $\Delta x_{n} \sim 1 \text{cm}$

Installed new sampling calorimeter RHICf in front of existing neutron calorimeter, ZDC.

RHICf Experiment : June 2017

- π^0 peak with ~10 MeV/ c^2 width
 - 3σ region selected as π^0 candidates
- *p*_T < 1.0 GeV/*c*

π^0 Performance

10⁴

10³

10²

10

π^0 Asymmetry Preliminary Results

Large Asymmetry was observed $p_T < 1$ GeV.

Neutron p_{T} coverage extention

Explore the proton spin in diffractive and transition to pQCD regime.

Summary

- Forward transverse single spin asymmetry has been considered to be sensitive to the orbital angular momentum.
- Forward π A_N has been studied in pQCD framework, but recent data indicate possibility of soft process may be (partially) playing a role.
- New p0 results showed large asymmetry pT<1GeV where diffractive process expected to dominate.
- RHICf experiment is expected to interconnect asymmetries between hard (pQCD) and soft (diffractive) nature.

RHICf Collaboration

Y. Goto, I. Nakagawa, R. Seidl (RIKEN) J. S. Park (Seoul National Univ.) B. Hong, <u>M. H. Kim</u> (Korea Univ.) K. Tanida (JAEA) Y. Itow, H. Menjo, <u>K. Sato</u>, M. Ueno, Q. D. Zhou, <u>M. Ueno</u> (Nagoya Univ.) T. Sako (ICRR, Univ. of Tokyo) K. Kasahara, T. Suzuki, S. Torii (Waseda Univ.) N. Sakurai (Tokushima Univ.) O. Adriani, E. Berti, L. Bonechi, R. D'Alessandro (INFN Firenze) A. Tricomi (INFN Catania)

Backup slides

Goal of RHICf Spin

Measure transverse single spin asymmetry of π^0 and neutron at zero degree. Explore the proton spin in diffractive and transition to pQCD regime.

Goal of RHICf Spin

Measure transverse single spin asymmetry of π^0 and neutron at zero degree. Explore the proton spin in diffractive and transition to pQCD regime.

Goal of RHICf Spin

Measure transverse single spin asymmetry of π^0 and neutron at zero degree. Explore the proton spin in diffractive and transition to pQCD regime.

Challenge to understand with existing TSSA data (2< η <4) altogether.