MC Event Generator BeAGLE for Forward Physics at the EIC

Mark D. Baker*

Oct. 17, 2018

BeAGLE Monte Carlo (w/ E. Aschenauer et al.) Example 1: e+Pb @ JLEIC: forward physics (w/ V. Morozov et. al.) Example 2: e+D @ eRHIC: forward physics (w/ Z. Tu et al.)

*- mdbaker@bnl.gov, mdbaker@jlab.org, mdbaker@mdbpads.com

Collaborators and Advisors & plot providers

- BeAGLE: E. Aschenauer, J.H. Lee, L. Zheng (+ R. Dupré, N. Armesto, M.Ehrhart) (+DPMJET team + Fluka team + Pythia team!)
- ePb @ JLEIC: A. Accardi, R. Dupré, M. Erhart, C. Fogler, C. Hyde, <u>V. Morozov</u>, P. Nadel-Turonski, K. Park, J. Stukes, <u>A. Sy</u>, T. Toll, G. Wei, <u>L. Zheng</u>
- eD @ eRHIC: <u>Z Tu</u>, T. Ullrich, C. Weiss
- Advice from: R. Venugopalan

BeAGLE – Benchmark eA Generator for LEptoproduction

- Aschenauer, MDB, Lee, Zheng (+DPMJET+Fluka+...)
- Merger of
 - Pythia6: hard interaction (adding RAPGAP option)
 - Glauber + multinucleon shadowing
 - PyQM: Optional radiative jet quenching (off today)
 - DPMJET3-F (DPMJET3+Fluka) nuclear response
- Tuned to ZEUS forward nucleons, FNAL E665 (FixTarg) slow neutrons, + HERMES
 - Working on E665 e-by-e charged hadrons (SC)

Key features of BeAGLE

Multistep process.

Hard interaction (DIS or diffractive) involving one or more nucleons (Glauber).

Intra Nuclear Cascade w/ Formation Zone

Excited nuclear remnant decays by: Fission &/or evaporation of nucleons De-excitation by gamma emission.

Try to model both hard process AND nuclear interaction.

It helps if A is big enough (12?) to leave a substantial remnant which can be modeled in the ion rest frame as a collection of onmass-shell nucleons with Fermi motion sitting in a mean field.

Substantial BeAGLE+Sartre effort for JLEIC

Geometry tagging for heavy ions at JLEIC*

(DIS 2018 meeting)

V.S. Morozov[†], A. Accardi, A. Sy, G.H. Wei

Thomas Jefferson National Accelerator Facility, Newport News, VA, USA

M.D. Baker

MDBPADS LLC, Miller Place, NY, USA

R. Dupré, M. Ehrhart

IPN Orsay, Orsay, France

C. Fogler, C.E. Hyde

Old Dominion University, Norfolk, VA, USA

P. Nadel-Turonski

Stony Brook University, Stony Brook, NY, USA

J. Stukes

Morehouse College, Atlanta, GA, USA

T. Toll

India Institute of Technology, Delhi, India

L. Zheng

China University of Geosciences, Wuhan, China

Importance of veto tagging

We must veto incoherent data or we have no information!

Only keep events with e'+²⁰⁸Pb+J/ ψ alone Veto on forward p, n, γ etc.

Forward acceptance at a collider

Forward proton acceptance in e+p is DIFFERENT from e+A

GEMC (Geant): JLEIC Simulation Setup

Survive FFQs ~ 10mr aperture (Final Focusing Quadrupoles) "very forward"

Veto inefficiency: BeAGLE + GEMC

BeAGLE models incoherent e+A diffraction as Glauber Σ e+N

Full + photons means we veto on all forward particles which make it through the first spectrometer dipole.

17-OCT-2018

JLEIC veto tagging results (e+Pb)

- Veto tagging helps.
- Very forward tag alone is questionable (need 3 dips).

JLEIC veto tagging results (e+Pb)

Sartre 10x40 e+Pb->J/ψ+X (smeared)

- Veto tagging helps.
- Very forward tag alone is questionable (need 3 dips).
- Forward tag better. Not ideal...
- Still studying impact on G(b) reconstruction.

 $_{10^{-2}}$ Forward tag (Full+ γ)

0.06

0.08

0.1

0.12

0.14

0.18

0.16

|t| [GeV²]

Challenge of veto tagging: Why so hard?

• Veto problems for |t|<0.06 GeV² are due to events where the struck nucleon is reabsorbed:

 $e + {}^{208}Pb_{82} \rightarrow e' + {}^{208}Pb_{82} + J/\psi + \gamma + \gamma + \gamma...$

Cartoons in Ion Rest Frame

One small kick to the nucleus doesn't excite it very much!

- σ ("dipole") modest for dipoles that become a J/ ψ .
- Therefore small $\langle N_{coll} \rangle$
- Glauber nucleon description affects only fluctuations:
 - Small hard sphere (BeAGLE)
 - Large diffuse sphere
 - Hard vs. fuzzy edges
 - Glauber-Gribov σ fluct.
- Any change drives:
 - Slightly MORE N_{coll}=1
 - Tails to higher $\rm N_{_{\rm coll}}$

Very weak dependence on INC details

- DPMJET Intranuclear cascade parameter τ_0
 - Mean formation time in hadron rest frame: exp($-\tau/\tau_0$)
 - E665 neutron data tune led to long $\tau_0 = 7$ fm/c

- Forward neutrons <u>and</u> protons <u>and</u> photons are ALL needed in order to veto incoherent diffraction and measure coherent diffraction.
- This statement is NOT very model dependent.
 - Glauber improvements \rightarrow vetoing slightly harder!
- Can we live with the current detector?
 - Can we subtract the remaining background?
 - If we invert what we can measure, how well do we reconstruct the input G(b)?

BeAGLE e+D project is just getting started

- MDB, Z. Tu, T. Ullrich, C. Weiss
- Current version
 - Impulse approximation (struck + spectator)
 - All relative p,n momentum from the initial state
 - Ad hoc adjustment of final state particle 4-momenta to match correct total 4-momentum of original γ*+D
- Next steps involve light-cone (+z along γ^*):
 - Conserve p^- , p_{τ} adjust only p^+ of non-spectators.
 - Get spectator p^+ , p^- , p_{τ} from light-cone wavefunction.
- Then: Better FS effects, Non-impulse approximation...

18x135 e+D momentum tail effect

Any p-kick (IS or FS) along the "z" direction in the ion rest frame is magnified! High p_z tails will be easy to pick out and measure.

> Note: k is the relative momentum of n wrt D (arbitrary distribution) k_z wrt z along γ^* D axis in IonRF. p_{zlab} has z along eD axis in lab.

Spectator neutrons (or p's) for k~575 MeV

18x135 GeV e+D \rightarrow e'+n+p+J/ ψ

Spectators are very forward, even for 550<k<600 MeV Neutrons basically contained in ZDC. Protons need study, but the prognosis is good.

Correlations

For struck neutron, spectator proton – lab variables $|t|<0.1 \text{ GeV}^2$, 550 < k < 600 MeV

Keeping $|t| < 0.1 \text{ GeV}^2$ contains forward nucleons in $\theta < 5 \text{ mr}!$ Nucleons are back to back (in this simulation)

- BeAGLE is a Benchmark eA Generator for LEptoproduction
 - Available to estimate rates & acceptance for many eA or ep processes (but not coherent diffraction).
 - Note: ep is basically just EIC-tuned Pythia 6.
 - For coherent diffraction, use Sartre
 - Can be compared with any new eA generators as they come online.
- We can clearly see that the forward detector suite will be crucial for eA physics at an EIC.
 - BeAGLE is helping to quantify that statement.

Extras

Angular acceptance for neutrons

Forward protons @ JLEIC

From V. Morozov

Results for all Data Sets

- Veto problems for $|t| < 0.07 \text{ GeV}^2$ are due to events where the struck nucleon and any further INC nucleons are reabsorbed: $e + {}^{208}\text{Pb}_{82} \rightarrow e' + {}^{208}\text{Pb}_{82} + J/\psi + \gamma + \gamma + \gamma ...$
- Excited Pb decays usually include a γ w/ E≥2.6 MeV
- Au decays are more challenging to detect!

Photons from ²⁰⁸Pb₈₂ in lab frame

Detailed studies ongoing.

It is clear that γ's will be needed for low |t|!

w/ Morozov, Hyde, Turonski et al.

17-OCT-2018

Longitudinal momentum in the ion rest frame gets magnified by γ

In ion rest frame:

 $P^{\mu} = \{M; 0, 0, 0\} \text{ OR } \{M + E_{kinF}; k_{xF}, k_{vF}, k_{zF}\}$

In lab collider frame: $P^{\mu} = \{\gamma M; 0, 0, \gamma \beta M\} \quad OR \quad \{\gamma M + \gamma \beta k_{zF} + \gamma E_{kinF}; k_{xF}, k_{vF}, \gamma \beta M + \gamma k_{zF}\}$

Since $\beta \sim 1$ and $E_{kinF} << k_{zF}$:

$$E \sim p_z \sim E_{beam} (1 + k_{zF}/M)$$

Conceptual problem for e+D w/ large k

 $W^{\mu} = \{v + M_{d}; 0, 0, sqrt(v^{2} + Q^{2})\} \qquad W^{\mu} = \{v + E_{n} + E_{p}; 0, 0, sqrt(v^{2} + Q^{2})\}$

Energy not conserved in the ion rest frame (E & p_z fail in other frames) Note: DPMJET3-F has the same problem. Minimized due to minimal p_F . Must adjust 4-momenta of final state.

Glauber Map

Map for $\lambda >> R$

