Proton-oxygen collisions at the LHC

Hans Dembinski, MPIK Heidelberg

CFNS workshop on Forward Physics And Instrumentation From Colliders To Cosmic Rays Oct 2018

Air showers and cosmic ray mass

 Direction from particle arrival times
 Energy from size of eγ component
 Mass from size of muonic component and depth of shower maximum

> Nυ J_μIroi at s

Number of muons and Mass Iron = 1.4 x proton yield at same CR energy

Shower depth and Mass Iron = proton - 100 g cm-2 at same CR energy

Based on Kampert & Unger, Astropart. Phys. 35 (2012) 660

Motivation

Astrophysical origins of cosmic rays?

- Mass composition (<InA>) of cosmic rays carries imprint of sources and propagation
- Uncertainties of <InA> limited by uncertainty in description of hadronic interactions
- **Muon Puzzle:** Muon predictions in air showers are inconsistent with X_{max}

Combined approach to get precise unambiguous <InA> data

- Cosmic ray community probes air showers and quantifies inconsistencies
- Collider community provides relevant reference measurements for model tuning

Indirect search for physics beyond the standard model at 100 TeV scale

Compilation of muon measurements

- WHISP report at UHECR 2018 conference, Oct 8-12 2018
- Comprehensive compilation of muon measurements from air shower experiments

Systematic discrepancies reported by majority of experiments starting around 5x10¹⁶ eV equiv. to s^{1/2} = 10 TeV

Apart from shower energy, possible dependence on shower age, lateral distance, muon energy threshold

Hans Dembinski | MPIK Heidelberg, Germany

How to fix the issue?

- No simple key measurement
- Need to accurately know and extrapolate several features
- Focus on measuring these features accurately in references systems, use models to predict interactions in unavailable target systems

Modeling air shower interactions

extrapolation to higher energy & different collision systems

- Light hadron production important
- Full rapidity range, mid-rapidity alone not enough

PbPb

Oxygen beam at LHC

- Low-luminosity oxygen beam comparably easy to do
 - Oxygen in lead source as support gas
 - Rapid set-up following 2012 p-Pb and 2017 Xe-Xe runs
 - Almost scheduled at end of 2018, but didn't happen
- To be done during LHC Run 3 (2021-2023)
- Upcoming Yellow Report about physics at HL-LHC with subsection about proton+oxygen science case
- Questions asked
 - Project quantitative impact of measurements?
 - Is p+p and p+Pb data sufficient?

Important features in hadron production

Modify features at LHC energy scale with factor f_{LHC-pO} and extrapolate up to 10^{19} eV proton initiating air shower R. Ulrich et al PRD 83 (2011) 054026

Hans Dembinski | MPIK Heidelberg

Inelastic cross-section

- pp inelastic cross-section now known to 3 %, see e.g. ATLAS arXiv:1606.02625
- Similar for p+Pb, about 4 %, CMS arxiv:1509.03893
- Glauber interpolation to p+O could have similar precision
- p+O collisions to cross-check Glauber interpolation

- X_{max} sensitive to: **inelastic cross-section**, hadron multiplicity
- N_{μ} sensitive to: energy fraction lost to π^{0} , hadron multiplicity
- Nuclear modification in forward-produced hadrons expected and important

Nuclear effects poorly understood

- Hadronic interaction models used in air shower simulation must predict
 p-air (nitrogen & oxygen), but can only be tuned to p-p and p-Pb with current data
- Non-trivial nuclear effects severely affect forward production of particles (most important in air showers, because dominant for energy transport)

J/Psi production measured by LHCb, Physics Letters B 774 (2017) 159-178

Nuclear modification factor $R_{pA} = \frac{\text{cross-section for pA}}{\text{A x cross-section for pp}}$

- Strong deviation from RpA = 1 for forward production
- 50 % uncertainty in PDF-based predictions
- Same effect observed in pion production at ALICE

Cannot translate this from p-Pb to p-O

Hadron spectra

- Simulations done with CRMC by R. Ulrich et al. <u>https://web.ikp.kit.edu/rulrich/crmc.html</u>
- Model spread: EPOS-LHC, QGSJet-II.04, SIBYLL-2.3

Models mostly tuned to p+p data at $|\eta| < 2$: p+p 10 % model spread, p+O 50 % model spread

- Saturation visible in EPOS, not in QGSJet-II.04
- 7 % deviation in pO even if models could be fixed to same values in pp and pPb (50 % otherwise)
 - 4 % shift in N_{μ} , 7 g cm-2 shift in X_{max} (comparable to exp. uncertainties)
- p+p and p+Pb may be able to constrain p+O, need measurement to confirm

Energy flow ratio

- Hadronic energy "lost" to π^0 s cannot produce muons in late shower
- "Energy loss" described by observable $E_{e\gamma}/E_{hadrons}$

- Model predictions differ by **15 %** and in **shape**: only EPOS has forward peaks
- Translates to about **20 % shift in N_{\mu} -> high impact on Muon Puzzle**

Hans Dembinski | MPIK Heidelberg

Energy flow ratio vs. system

- p+p and p+Pb together may be able to constrain p+O, but shape evolution not clear
- Need to measure it in p+O

Summary

- Wanted: p-O collisions to accurately simulate hadronic showers in air
 - Current uncertainties 50 % in pion multiplicity, need better than 10 %
 - Needed by community of 900+ scientists (Auger, TA, IceCube, ...)
 - Moderate luminosity sufficient (100 M events)
 - Interest expressed by LHCf and members of LHCb, CMS, ATLAS
- Nuclear effects in proton-ion collisions cannot be accurately predicted (yet)
 - Cannot simply interpolate p-O from p-p and p-Pb
 - Effects largest in forward production which dominates air showers
- Measurements in p-O
 - Inelastic cross-section
 - Energy flow separated by hadrons and eγ
 - Spectra of light hadrons π , K, p
 - π^0 , n with LHCf in very forward range

BACKUP

Hans Dembinski | MPIK Heidelberg, Germany

LHCb

JINST 3 (2008) S08005 IJMP A 30 (2015) 1530022

Hans Dembinski | MPIK Heidelberg, Germany