

Total Cross Sections and Diffraction at at RHIC

(with detection of forward protons in Roman Pots) Włodek Guryn

- 1. Experimental setup at STAR (use of Roman Pots from the pp2pp experiment)
- 2. Elastic and total cross section
 - Analysis
 - Distributions of physics variables (-t, ϕ)
 - Simulations and efficiency, acceptance corrections
 - Results: d σ /dt, B-slope, $\sigma_{\rm tot}, \sigma_{\rm el}$
- 3. Results on Central Exclusive Production (CEP)
- 4. Results on Central Production (CP)
- 5. Results on Single Diffractive Dissociation (SDD)

Experimental Setup

In this configuration, RP program at STAR was able to acquire large data samples without special running conditions – mostly for CEP, SDD and CP analyses.

Elastic Scattering: Data Analysis

• Trigger was very inclusive: it required a signal in at least one RP on each side only.

 $\mathbf{RP}_{-}\mathbf{ET} = (\mathbf{E1U} \lor \mathbf{E2U} \lor \mathbf{E1D} \lor \mathbf{E2D}) \land (\mathbf{W1U} \lor \mathbf{W2U} \lor \mathbf{W1D} \lor \mathbf{W2D})$

- Need to minimize background and maximize efficiency.
- To reduce background need angle reconstruction => two RPs on each side in up down combination.

$$\begin{split} \mathbf{EU} &= (\mathbf{E1U} \wedge \mathbf{E2U}) \ ; \ \mathbf{ED} &= (\mathbf{E1D} \wedge \mathbf{E2D}) \\ \mathbf{WU} &= (\mathbf{W1U} \wedge \mathbf{W2U}) \ ; \ \mathbf{WD} &= (\mathbf{W1D} \wedge \mathbf{W2D}) \\ \mathbf{ET1} &= (\mathbf{EU} \wedge \mathbf{WD}) \\ \mathbf{ET2} &= (\mathbf{ED} \wedge \mathbf{WU}) \end{split}$$

- Use events with four track points one track point per Roman Pot.
- Finally, choose fiducial region away from the apertures of DX magnet and beam pipe in front of the RPs.

CFNS Workshop Oct. 17 - 19, 2018

Collinearity

$$\vec{p_1} = -\vec{p_2} \Rightarrow (\Theta_{x1}, \Theta_{y1}) = (-\Theta_{x2}, -\Theta_{y2}) \Rightarrow \Delta\Theta_x = \Delta\Theta_y = 0$$

Since the elastic events must satisfy collinearity condition collinearity within $2\sigma_{\theta}$. Namely $|\theta_{West} - \theta_{East}| < 2\sigma_{\theta}$, where $\sigma_{\theta} = 255 \mu rad$, is required.

Events are well centered within 2σ and 3σ contours.

Geometrical Acceptance GEANT4 MC: I

Choice of geometrical acceptance (t, ϕ) plane $0.04 \le |t| \le 0.16[(GeV/c)^2]$

 $79.5 \le |\phi| \le 101.5[deg]$

 $2.00 \le \theta \le 4.00[mrad]$

Geometrical Acceptance and Event Yields

Choose region away from steep variation and edges of acceptance

25			
(<i>t</i>) 20	Correction ET-COL C(t) = Correction ET-4RP-COL Correction ET-4RP-COL-GEO	C(t) = 1./A(t)	
	Condition	# events	
15	ET triggered	6.607M	
	ET accepted	3.974M	
10	Collinear	2.696M	
	4 PT Collinear	1.100M	
5	4 PT Collinear Geom.	0.667M	

0.066716.00vent98used for the fine fanalysis Iti [(GeV/c)²]

GEANT4 MC: Background Study

- 1. Each distribution is normalized to 1, independently
- 2. Normalization MC to Data done by normalizing peaks
- 3. Background mostly due to the rescattered protons in the the beam pipe and the DX magnet
- 4. Background is small 0.3%, after $2\Delta\Theta$ cut and after geometrical acceptance cut

Results: Corrected $d\sigma/dt$ and Fits

$$\frac{d\sigma_{el}}{dt} = \frac{1+\rho^2}{16\pi(\hbar c)^2} \cdot \sigma_{tot}^2 \cdot e^{-B|t|}$$
$$\sigma_{tot}^2 = \left(\frac{16\pi(\hbar c)^2}{1+\rho^2}\right) \left.\frac{d\sigma_{el}}{dt}\right|_{t=0}$$
$$\sigma_{el} = \int \frac{d\sigma_{el}}{dt} dt$$

The value of $\rho = 0.128$ from COMPETE model was used*. * Phys. Rev. Lett. 89 (2002) 201801

Results

Fit results

FILTER	$\mathrm{d}\sigma_{el}/\mathrm{d}t _{t=0}~\mathrm{[mb}/~\mathrm{GeV^2]}$	$B \ [GeV^{-2}]$	$\sigma_{tot} \; [mb]$	$\sigma_{el} \; [mb]$
4PT-COL	134.3 ± 1.6	14.0 ± 0.2	50.7 ± 0.6	9.6 ± 0.1
4PT-GEO	136.7 ± 0.8	14.2 ± 0.2	51.3 ± 0.4	9.6 ± 0.1

Quantity			Statistical	Systematic
name	units	Value	uncertainty	uncertainty
В	$[(GeV/c)^{-2}]$	14.2	± 0.1	± 0.3
σ_{el}	[mb]	9.6	± 0.1	± 0.7
σ_{tot}	[mb]	51.3	± 0.4	$\substack{+2.1\\-1.9}$

The main source of systematic uncertainty are: luminosity measurement and beam tilt angle.

Comparison with the World Data

STAR results compare well with the world data and the COMPETE predictions: Phys. Rev. Lett. 89 (2002) 201801 Plots form the TOTEM Collaboration <u>https://arxiv.org/pdf/1712.06153v2.pdf</u> with STAR preliminary results added

Central Exclusive Production

Rafal Sikora

Results on production and measurement of low-mass central states in diffractive proton-proton interactions with detection of forward protons.

CEP Continued

Mass spectrum of exclusive $\pi^+ \pi^-$ and K⁺K⁻ is rich in structures, which might be attributed to resonances with J^{PC} = 0⁺⁺ (f0(980); f0(1500)) and 2⁺⁺(f2(1270)), of which some are considered to have large gluonic content; no clear signal from states with non-DPE quantum numbers are observed.

Particle production in SDD and CP

Lukasz Fulek

Preliminary results on inclusive charged-particle spectra shows that PYTHIA 8 underestimates SD and CD charged-particle density for high-pT, whereas η charged-particle density in SD and CD are underestimated up to 5% by PYTHIA 8.

Other studies include: charged particle ratios, study of baryon number transport through proton/antiproton ratio.

Summary

- 1. The STAR experiment at RHIC measured elastic differential cross sections in the |t|-range [0.045, 0.125] (GeV/c)² in p+p collisions at $\sqrt{s} = 200$ GeV.
- 2. The resulting values of B-slope, $\sigma_{\rm tot}$, $\sigma_{\rm el}$ are:
 - Slope parameter B = 14.2 ± 0.1 (stat) ± 0.3 (syst)(GeV/c)⁻²
 - The total cross section σ_{tot} = 51.3 ± 0.4 (stat) + 2.1 1.9 (syst) (mb) COMPETE Predictor, Phys. Rev. Lett. 89 (2002) 201801 σ_{tot} = 51.76 ± 0.12 (stat) +0.4 – 0.2 (syst) mb
 - The elastic cross section $\sigma_{\rm el}$ = 9.6 \pm 0.1 (stat) \pm 0.7 (syst) mb
- 3. Studies of resonance production in CEP process is ongoing, resonant spectrum is observed with features indication presence of 0⁺⁺ and 2⁺⁺ states.
- 4. Charged particle production and charged particle ratios are studied in CP and SDD process.