Forward Physics with proton tagging at the LHC

Christophe Royon University of Kansas, Lawrence, USA

CFNS Workshop, Stony Brook, 17-19 October 2018

- Proton tagging at the LHC
- QCD structure of colorless object
- BFKL resummation effects
- Beyond standard model: Anomalous coupling, axions

What is AFP/CT-PPS?

- Tag and measure protons at ±210 m: AFP (ATLAS Forward Proton), CT-PPS (CMS TOTEM Precision Proton Spectrometer)
- All diffractive cross sections computed using FPMC
- Complementarity between low and high mass diffraction (high and low cross sections): low lumi runs (high β*) and high lumi (low β*, standard LHC running)

Diffraction at LHC

Kinematic variables

- *t*: 4-momentum transfer squared
- ξ_1, ξ_2 : proton fractional momentum loss (momentum fraction of the proton carried by the pomeron)
- $\beta_{1,2} = x_{Bj,1,2}/\xi_{1,2}$: Bjorken-x of parton inside the pomeron
- $M^2 = s\xi_1\xi_2$: diffractive mass produced
- $\Delta y_{1,2} \sim \Delta \eta \sim \log 1/\xi_{1,2}$: rapidity gap

Hard diffraction at the LHC

- Dijet production: dominated by gg exchanges; γ+jet production: dominated by qg exchanges (C. Marquet, C. Royon, M. Saimpert, D. Werder, arXiv:1306.4901)
- Jet gap jet in diffraction: Probe BFKL (C. Marquet, C. Royon, M. Trzebinski, R. Zlebcik, Phys. Rev. D 87 (2013) 034010; O. Kepka, C. Marquet, C. Royon, Phys. Rev. D79 (2009) 094019; Phys.Rev. D83 (2011) 034036)
- Three aims
 - Is it the same object which explains diffraction in pp and ep?
 - Further constraints on the structure of the Pomeron as was determined at HERA
 - Survival probability: difficult to compute theoretically, needs to be measured, inclusive diffraction is optimal place for measurement

One aside: Parton densities in the pomeron (H1)

- Extraction of gluon and quark densities in pomeron: gluon dominated
- Gluon density poorly constrained at high β

Inclusive diffraction at the LHC: sensitivity to gluon density

- Predict DPE dijet cross section at the LHC in AFP acceptance, jets with $p_T > 20$ GeV, reconstructed at particle level using anti-k_T algorithm
- Sensitivity to gluon density in Pomeron especially the gluon density on Pomeron at high β : multiply the gluon density by $(1 \beta)^{\nu}$ with $\nu = -1, ..., 1$
- Measurement possible with 10 pb⁻¹, allows to test if gluon density is similar between HERA and LHC (universality of Pomeron model)
- Dijet mass fraction: dijet mass divided by total diffractive mass $(\sqrt{\xi_1\xi_2S})$

Inclusive diffraction at the LHC: sensitivity to quark densities

- Predict DPE $\gamma+{\rm jet}$ divided by dijet cross section at the LHC
- Sensitivity to universality of Pomeron model
- Sensitivity to quark density in Pomeron, and of assumption: $u = d = s = \overline{u} = \overline{d} = \overline{s}$ used in QCD fits at HERA
- Measurement of W asymmetry also sensitive to quark densities

Looking for BFKL effects

- Dokshitzer Gribov Lipatov Altarelli Parisi (DGLAP): Evolution in Q^2
- Balitski Fadin Kuraev Lipatov (BFKL): Evolution in x

Aim: Understanding the proton structure (quarks, gluons)

Q² : resolution inside the proton (like a microscope)

X : Proton momentum fraction carried away by the interacting quark

Jet gap jet events in diffraction

- Study BFKL dynamics using jet gap jet events in DPE
- See: C. Marquet, C. Royon, M. Trzebinski, R. Zlebcik, Phys. Rev. D 87 (2013) 034010

Exclusive diffraction

- Many exclusive channels can be studied: jets, χ_C , charmonium, J/Ψ
- Possibility to reconstruct the properties of the object produced exclusively (via photon and gluon exchanges) from the tagged proton
- CMS/TOTEM/ALFA have the possibility to discover/exclude glueballs at low masses: Check the $f_0(1500)$ or $f_0(1710)$ glueball candidates
- Simulation of signal $f_0(1710) \rightarrow \rho^0 \rho^0$ and non resonant $\rho^0 \rho^0$

Search for quartic $\gamma\gamma$ anomalous couplings

- Search for $\gamma\gamma\gamma\gamma\gamma$ quartic anomalous couplings
- Couplings predicted by extra-dim, composite Higgs models
- Analysis performed at hadron level including detector efficiencies, resolution effects, pile-up...

One aside: what is pile up at LHC?

- The LHC machine collides packets of protons
- Due to high number of protons in one packet, there can be more than one interaction between two protons when the two packets collide
- Typically up to 50 pile up events

$\gamma\gamma$ exclusive production: SM contribution

- QCD production dominates at low $m_{\gamma\gamma}$, QED at high $m_{\gamma\gamma}$
- Important to consider W loops at high $m_{\gamma\gamma}$
- At high masses (> 200 GeV), the photon induced processes are dominant
- Conclusion: Two photons and two tagged protons means photon-induced process

Motivations to look for quartic $\gamma\gamma$ anomalous couplings

• Two effective operators at low energies

$$\mathcal{L}_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\lambda} F^{\lambda\mu}$$

• $\gamma\gamma\gamma\gamma$ couplings can be modified in a model independent way by loops of heavy charge particles

$$\zeta_1 = \alpha_{em}^2 Q^4 m^{-4} N c_{1,s}$$

where the coupling depends only on Q^4m^{-4} (charge and mass of the charged particle) and on spin, $c_{1,s}$ depends on the spin of the particle This leads to ζ_1 of the order of 10^{-14} - 10^{-13}

• ζ_1 can also be modified by neutral particles at tree level (extensions of the SM including scalar, pseudo-scalar, and spin-2 resonances that couple to the photon) $\zeta_1 = (f_s m)^{-2} d_{1,s}$ where f_s is the $\gamma \gamma X$ coupling of the new particle to the photon, and $d_{1,s}$ depends on the spin of the particle; for instance, 2 TeV dilatons lead to $\zeta_1 \sim 10^{-13}$

Search for quartic $\gamma\gamma$ anomalous couplings

Cut / Process	Signal (full)	Signal with (without) f.f (EFT)	Excl.	DPE	DY, di-jet + pile up	$\gamma\gamma$ + pile up
$[0.015 < \xi_{1,2} < 0.15, p_{\mathrm{T1},(2)} > 200, (100) \text{ GeV}]$	65	18 (187)	0.13	0.2	1.6	2968
$m_{\gamma\gamma} > 600 \mathrm{GeV}$	64	17 (186)	0.10	0	0.2	1023
$\begin{aligned} &[p_{\rm T2}/p_{\rm T1} > 0.95, \\ & \Delta \phi > \pi - 0.01] \end{aligned}$	64	17(186)	0.10	0	0	80.2
$\sqrt{\xi_1\xi_2s} = m_{\gamma\gamma} \pm 3\%$	61	$16\ (175)$	0.09	0	0	2.8
$ y_{\gamma\gamma} - y_{pp} < 0.03$	60	$12 \ (169)$	0.09	0	0	0

- No background after cuts for 300 fb⁻¹: sensitivity up to a few $!0^{-15}$, better by 2 orders of magnitude with respect to "standard" methods
- Exclusivity cuts using proton tagging needed to suppress backgrounds (Without exclusivity cuts using CT-PPS: background of 80.2 for 300 fb⁻¹)

Generalization - Looking for axion like particles

Search for axion like particles

- Production of ALPs via photon exchanges and tagging the intact protons in the final state complementary to the usual search at the LHC (Z decays into 3 photons): sensitivity at high ALP mass (spin 0 even resonance, width 45 GeV)- C. Baldenegro, S. Fichet, G. von Gersdorff, C. Royon, ArXiv 1803.10835, JHEP 1806 (2018) 131
- Complementarity with Pb Pb running: sensitivity to low mass diphoton, low luminosity but cross section increased by Z^4

$\gamma\gamma\gamma Z$ quartic anomalous coupling

- \bullet Look for $Z\gamma$ anomalous production
- Z can decay leptonically or hadronically: the fact that we can control the background using the mass/rapidiy matching technique allows us to look in both channels (very small background)

$\gamma\gamma\gamma Z$ quartic anomalous coupling

- C. Baldenegro, S. Fichet, G. von Gersdorff, C. Royon, JHEP 1706 (2017) 142
- Best expected reach at the LHC by about three orders of magnitude
- Advantage of this method: sensitivity to anomalous couplings in a model independent way: can be due to wide/narrow resonances, loops of new particles as a threshold effect

Conclusion

- Better understanding of diffraction in QCD (pomeron structure) and also BFKL resummation at low \boldsymbol{x}
- $\gamma\gamma\gamma\gamma$, $\gamma\gamma ZZ$, $\gamma\gamma WW$, $\gamma\gamma\gamma Z$ anomalous coupling studies
 - Exclusive process: photon-induced processes $pp \rightarrow p\gamma\gamma p$ (gluon exchanges suppressed at high masses):
 - Theoretical calculation in better control (QED processes with intact protons), not sensitive to the photon structure function
 - "Background-free" experiment and any observed event is signal
 - NB: Survival probablity in better control than in the QCD (gluon) case
- CT-PPS/AFP allows to probe BSM diphoton production in a model independent way: sensitivities to values predicted by extradim or composite Higgs models
- Timing detectors: development for LHC, many applications
- Complementarity between LHC and EIC: QCD, saturation, BSM

