p-O science case: summary

Hans Dembinski, MPIK

Global Spline Fit

HD, R. Engel, A. Fedynitch, T. Gaisser, F. Riehn, T. Stanev, PoS(ICRC 2017)533

Uncertainty on all-particle flux about 10 %, good agreement on shape, but mass composition uncertain

Hans Dembinski | MPIK

Mass estimation

Hans Dembinski | MPIK Heidelberg, Germany

Motivation: CR mass composition

Based on Kampert & Unger, Astropart. Phys. 35 (2012) 660

• Precise mass composition could rule out many theories of cosmic ray origin

- Crucial for design of future experiments, if composition is heavy at highest energies...
 - Strongly reduced flux of GZK neutrinos
 - Probably no cosmic ray astronomy

R. Aloisio , V. Berezinsky , A. Gazizov Ultra High Energy Cosmic Rays: The disappointing model Astroparticle Physics 34 (2011) 620-626

How to get accurate mass

- X_{max} is best mass estimator, but need to also solve Muon Puzzle for consistent picture
- Improve accuracy of X_{max} predictions below 10 g cm-2 (current experimental uncertainty)
- N_µ must not be as accurate, only consistent

Future neutrino experiments will all **miss the required sensitivity and energy**, if UHECR are nuclei

| Hadronic interactions in Astroparticle Physics | 2018/10/18 Stony Brook | Anatoli Fedynitch

Modify hadronic interaction models

Modify features at LHC energy scale with factor f_{LHC-pO} and extrapolate up to 10^{19} eV proton shower R. Ulrich et al PRD 83 (2011) 054026

Modified features

- cross-section: inelastic cross-section of all interactions
- hadron multiplicity: total number of secondary hadrons
- elasticity: E_{leading}/E_{total} (lab frame)
- π^0 fraction: (no. of π^0) / (all pions)

Importance of features

Modify features at LHC energy scale with factor f_{LHC-pO} and extrapolate up to 10^{19} eV proton shower R. Ulrich et al PRD 83 (2011) 054026

Hans Dembinski | MPIK Heidelberg

- X_{max} sensitive to: inelastic cross-section, hadron multiplicity, elasticity
- N_{μ} sensitive to: energy fraction lost to π^{0} , hadron multiplicity
- Nuclear modification in forward-produced hadrons expected and important

Compilation of muon measurements

- WHISP report at UHECR 2018 conference, Oct 8-12 2018
- Comprehensive compilation of muon measurements from air shower experiments

Systematic discrepancies reported by majority of experiments starting around 5x10¹⁶ eV equiv. to s^{1/2} = 10 TeV

Apart from shower energy, possible dependence on shower age, lateral distance, muon energy threshold

Hans Dembinski | MPIK Heidelberg, Germany

Hadron spectra

- Simulations done with CRMC by R. Ulrich et al. <u>https://web.ikp.kit.edu/rulrich/crmc.html</u>
- Model spread: EPOS-LHC, QGSJet-II.04, SIBYLL-2.3

Models mostly tuned to p+p data at $|\eta| < 2$: p+p 10 % model spread, p+O 50 % model spread

Energy flow ratio

- Hadronic energy "lost" to π^0 s cannot produce muons in late shower
- "Energy loss" described by observable $E_{e\gamma}/E_{hadrons}$

- Model predictions differ by **15 %** and in **shape**: only EPOS has forward peaks
- Translates to about **20 % shift in N_{\mu} -> high impact on Muon Puzzle**

Hans Dembinski | MPIK Heidelberg

Measurements in p-O

- Differential cross-section for production of π , K, p
 - Needs hadron PID
 - ALICE: -2 < η < 2
 - LHCb: $2 < \eta < 5$
- Differential cross-section for charged particles
 - Needs tracking for -7 < η < 7
 - ATLAS, CMS
- Energy flow separated by hadrons and eγ
 - Needs good Ecal and Hcal for -7 < η < 7
 - ATLAS, CMS & CASTOR
- LHCf: π^0 , n in very forward range for elasticity
- Inelastic cross-section?
 - Interpolation from pp, pPb probably ok

