Novel Features of QCD Phenomenology at High X

$$
\text { Fixed } \tau=t+z / c
$$

CFNS workshop on Forward Physics And Instrumentation From Colliders To Cosmic Rays

Stan Brodsky
Center for Frontiers in Nuclear Science

Stony Brook
October I7, 2018

- Heavy Quark Phenomena: Intrinsic + Extrinsic
- High-x Gluon Distributions
- Exotic Heavy Quark Spectroscopy
- Higher Fock States of Proton and Nuclei
- Strangeness Asymmetry
- Novel Drell-Yan Studies
- Nuclear and Heavy lon Effects: Ridge, baryon to meson
- Ultra-Peripheral Collisions
- Single-Spin Asymmetries
- Many Advantages of Fixed Target at LHC (AFTER and SMOG@LHCb)

$$
\begin{aligned}
& \mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi> \\
& x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}} \\
& P^{+}, \vec{P}_{\perp} \\
& \psi_{n}\left(x_{i}, \vec{k}_{\perp_{i}}, \lambda_{i}\right)
\end{aligned}
$$

Eigenstate of LF Hamiltonian:
Off-shell in Invariant Mass
Measurements of hadron LF wavefunction are at fixed LF time

Like aflash photograph

Fixed $\tau=t+z / c$

$$
x_{b j}=x=\frac{k^{+}}{P^{+}}
$$

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

Eigenstate of LF Hamiltonian

$$
\begin{aligned}
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}} & \text { Fixed } \tau=t+z / c \\
P^{+}, \vec{P}_{\perp} & \\
\psi_{n}\left(x_{i}, \vec{k}_{\perp_{i}}, \lambda_{i}\right) & x_{i} P^{+}, x_{i} \vec{P}_{\perp}
\end{aligned}
$$

$\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>$

$$
\left|p, J_{z}>=\sum \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>\quad \sum_{i}^{n} x_{i}=1
$$

$$
n=3
$$

$$
\begin{gathered}
\sum_{i}^{n} x_{i}=1 \\
\sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}
\end{gathered}
$$

Invariant under boosts! Independent of P^{μ}
Causal, Frame-independent. Creation Operators on Simple Vacuum, Current Matrix Elements are Overlaps of LFWFS

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

Transverse density in momentum space

Lorre,
Pasquini

Momentum space

$$
\begin{gathered}
\vec{k}_{\perp} \leftrightarrow \vec{z}_{\perp} \\
\vec{\Delta}_{\perp} \leftrightarrow \vec{b}_{\perp}
\end{gathered}
$$

Position space

Transverse density in position space

+ Factorization-Breaking Lensing Corrections: Sivers, T-odd

Wavefunction at fixed LF time: Off-Shell in Invariant Mass

Eigenstate of LF Hamiltonian: all Fock states contribute

$$
\left|p, J_{z}>=\sum_{n=3} \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>
$$

Higher Fock States ofthe Proton

Fixed LF time

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fork State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fraction

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

> Intrinsic heavy quarks
> $s(x), c(x), b(x)$ at high x !

$$
\begin{aligned}
& \bar{s}(x) \neq s(x) \\
& \bar{u}(x) \neq \bar{d}(x)
\end{aligned}
$$

Fixed LF time $\tau=t+z / c$

$$
\bar{d}(x) / \bar{u}(x) \text { for } 0.015 \leq x \leq 0.35
$$

■ E866/NuSea (Drell-Yan)

$$
\bar{d}(x) \neq \bar{u}(x)
$$

Interactions of quarks at same rapidity in 5-quark Fock state

Intrinsic sea quarks

Measure strangeness distribution

 in Semi-Inclusive DIS at JLab$$
\text { Is } s(x)=\bar{s}(x) ?
$$

- Non-symmetric strange and antistrange sea?
- Non-perturbative physics

Tag struck quark flavor in semi-inclusive DIS $e p \longrightarrow e^{\prime} K^{+} X$

Nonperturbative strange-quark sea from lattice QCD, light-front holography, and meson-baryon fluctuation models

Raza Sabbir Sufian, ${ }^{1}$ Tianbo Liu, ${ }^{1,2,}{ }^{2}$ Guy F. de Téramond, ${ }^{3}$ Hans Günter Dosch, ${ }^{4}$
Stanley J. Brodsky, ${ }^{5}$ Alexandre Deur, ${ }^{1}$ Mohammad T. Islam, ${ }^{6}$ and Bo-Qiang Ma ${ }^{7,8,9}$
(HLFHS Collaboration)

HERMES: Two components to $s\left(X, Q^{2}\right)$!

Sensitive to Fragmentation Function
W. C. Chang and J.-C. Peng arXiv:IIO5.238I

Comparison of the HERMES $x(s(x)+\bar{s}(x))$ data with the calculations based on the BHPS model. The solid and dashed curves are obtained by evolving the BHPS result to $Q^{2}=2.5 \mathrm{GeV}^{2}$ using $\mu=0.5 \mathrm{GeV}$ and $\mu=0.3 \mathrm{GeV}$, respectively. The normalizations of the calculations are adjusted to fit the data at $x>0.1$ with statistical errors only, denoted by solid circles.

BHPS: Hoyer, Sakai,
Peterson, sjb

Intrinsic

 strangeness!Consistent with intrinsic charm data
QCD: $\frac{1}{M_{Q}^{2}}$ scalin

$$
s\left(x, Q^{2}\right)=s\left(x, Q^{2}\right)_{\text {extrinsic }}+s\left(x, Q^{2}\right)_{\mathrm{intrinsic}}
$$

Do beavy quarks exist in the proton at high x ?
Conventional wisdom: gluon splitting

Heavy quarks generated only at low x via DGLAP evolution from gluon splitting

Maximally off-shell - requires low x, high W2

$$
\begin{gathered}
s\left(x, \mu_{F}^{2}\right)=c\left(x, \mu_{F}^{2}\right)=b\left(x, \mu_{F}^{2}\right) \equiv 0 \\
\text { at starting scale } Q_{0}^{2}=\mu_{F}^{2}
\end{gathered}
$$

Fixed LF time

Proton Self Energy
Intrinsic Heavy Quarks

Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}}$

Probability $(\mathrm{QCD}) \propto \frac{1}{M_{Q}^{2}}$
Collins, Ellis, Gunion, Mueller, sjb M. Polyakov, et al.

Fixed LF time

Proton 5 -quark Fock State:
Intrinsic Heavy Quarks

$x_{Q} \propto\left(m_{Q}^{2}+k_{\perp}^{2}\right)^{1 / 2}$
QCD predicts
Intrinsic Heavy Quarks at high x!

Minimal off-shellness

Maximum at Equal rapidity!
Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}} \quad$ Probability $(\mathrm{QCD}) \propto \frac{1}{M_{Q}^{2}}$

Rigorous OPE
Analysis

Collins, Ellis, Gunion, Mueller, sjb
Polyakov, et al.

DGLAP / Pboton-Gluon Fusion:factor of 30 too small

Two Components (separate evolution):
$c\left(x, Q^{2}\right)=c\left(x, Q^{2}\right)_{\text {extrinsic }}+c\left(x, Q^{2}\right)_{\text {intrinsic }}$

Bednyakov, Lykasov, Smiesko,Tokar, sjb

$$
w=P_{c \bar{c}}^{i n t r i n s i c}
$$

Intrinsic Heavy-Quark Fock

- Rigorous prediction of QCD, OPE
- Color-Octet Color-Octet Fock State

- Probability $\quad P_{Q \bar{Q}} \propto \frac{1}{M_{Q}^{2}} \quad P_{Q \bar{Q} Q \bar{Q}} \sim \alpha_{S}^{2} P_{Q \bar{Q}} \quad P_{c \bar{c} / p} \simeq 1 \%$
- Large Effect at high x
- Greatly increases kinematics of colliders such as Higgs production
- Underestimated in conventional parameterizations of heavy quark distributions
- Many EIC, LHC tests (LHCb -SMOG)

10 Measurement of $\gamma+b+X$ and $\gamma+c+X$ Production Cross Sections
in $p \bar{p}$ Collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

$c\left(x, Q^{2}\right)=c\left(x, Q^{2}\right)_{\text {extrinsic }}+c\left(x, Q^{2}\right)_{\text {intrinsic }}$
$p \bar{p} \rightarrow \gamma+Q+X$

$$
\frac{\Delta \sigma(\bar{p} p \rightarrow \gamma c X)}{\Delta \sigma(\bar{p} p \rightarrow \gamma b X)}
$$

Ratio is insensitive to gluon PDF, scales

$$
g c \rightarrow \gamma c
$$

Signal for

 significant intrinsic charmMesropian, Bandurin
LHC: $p p \rightarrow Z^{0} c X$
Boettcher, Itten,Williams
$\mathrm{R}=\sigma(\gamma+\mathrm{c}) / \sigma(\gamma+\mathrm{b})$ for $\mathrm{p} \operatorname{bar}\{\mathrm{p}\}->\gamma+\mathrm{Q}$ at $\mathrm{s}^{1 / 2}=1.98 \mathrm{TeV}$ (left)
$\mathbf{R}=\sigma(\gamma+\mathbf{c}) / \sigma(\gamma+\mathbf{b})$ for $\mathbf{p} \mathbf{p}->\gamma+\mathbf{Q}$ at $\mathbf{s}^{1 / 2}=8 \mathrm{TeV}$ (right)

V,M,Abazov, et al. (D0) Phys.Lett. B719 (2013) 354 .

$$
\frac{\sigma(p p \rightarrow \gamma c X)}{\sigma(p p \rightarrow \gamma b X)}
$$

A.V.Lipatov, G.I.Lykasov, Yu.Yu.Stepanenko, V.A.Bednyakov, Phys.Rev. D94, 053011 (2016) ; S.J.Brodsky, V.A.Bednyakov, G.I.Lykasov, J.Smiesko, S.Tokar, arXiv:1612.01351, Prog. Part.Nucl.Phys. in press

AdS5: Conformal Template for QCD

- Light-Front Holography
with Guy de Teramond and Hans Guenter Dosch

Fixed $\tau=t+z / c$
Duality of AdS ${ }_{5}$ with LF Hamiltonian Theory

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

- Light Front Wavefunctions: Light-Front Schrödinger Equation Spectroscopy and Dynamics
$k_{\perp}(\mathrm{GeV})^{1.4}$

$$
\mathrm{H}_{L F}^{Q C D}|\psi\rangle=M^{2}|\psi\rangle
$$

Nonperturbative strange-quark sea from lattice QCD, light-front holography, and meson-baryon fluctuation models

Raza Sabbir Sufian, ${ }^{1}$ Tianbo Liu, ${ }^{1,2,}{ }^{2}$ Guy F. de Téramond, ${ }^{3}$ Hans Günter Dosch, ${ }^{4}$
Stanley J. Brodsky, ${ }^{5}$ Alexandre Deur, ${ }^{1}$ Mohammad T. Islam, ${ }^{6}$ and Bo-Qiang Ma ${ }^{7,8,9}$
(HLFHS Collaboration)

Analytic, defined at all scales, IR Fixed Point

AdS/QCD dilaton captures the higher twist corrections to effective charges for $\mathbf{Q}<\mathbf{I} \mathbf{G e V}$

$$
e^{\varphi}=e^{+\kappa^{2} z^{2}}
$$

Deur, de Teramond, sjb

$$
m_{\rho}=\sqrt{2} \kappa
$$

All-Scale QCD Coupling

AdS/QCD

Soft-Wall Model
Single schemeindependent fundamental mass scale
κ

de Tèramond, Dosch, sjb

Superconformal Algebra

2X2 Hadronic Multiplets

Superconformal algebra

2×2 Matrix Representations: Mass-Degenerate Hadronic Eigensolutions

$$
\left(\begin{array}{cc}
\phi_{M}\left(L_{M}=L_{B}+1\right) & \psi_{B-}\left(L_{B}+1\right) \\
\psi_{B+}\left(L_{B}\right) & \phi_{T}\left(L_{T}=L_{B}\right)
\end{array}\right)
$$

quark-diquark baryons
Meson $\left([\bar{q} q]_{L}\right)$

Baryon $(q[q q])_{L}$

diquark-diquark tetraquarks

Hadron Spectrum in LF Holography

S.J. Brodsky, G.F. de Téramond, H.G. Dosch, J. Erlich, Phys. Rep. 584, 1 (2015); H.G. Dosch, G.F. de Téramond, S.J. Brodsky, Phys. Rev. D 91, 045040 (2015); D91, 085016 (2015).

Meson			Baryon			Tetraquark		
q-cont	$J^{P(C)}$	Name	q-cont	J^{P}	Name	q-cont	$J^{P(C)}$	Name
$\bar{q} q$	0^{-+}	π (140)	-	-	-	-	-	-
$\bar{q} q$	1^{+-}	b_{1} (1235)	$[u d] q$	$(1 / 2)^{+}$	$N(940)$	$[u d][\bar{u} \bar{d}]$	0^{++}	$f_{0}(980)$
$\bar{q} q$	2^{-+}	$\pi_{2}(1670)$	$[u d] q$	(1/2) ${ }^{-}$	$N_{\frac{1}{2}-(1535)}$	$[u d][\bar{u} \bar{d}]$	1^{-+}	$\pi_{1}(1400)$
				$(3 / 2)^{-}$	$N_{\frac{3}{2}}$-(1520)			$\pi_{1}(1600)$
$\bar{q} q$	1--	¢(770) w(780)						
$\bar{q} q$	2^{++}	$a_{2}(1320), f_{2}(1270)$	$[q q] q$	$(3 / 2)^{+}$	Δ (1232)	$[q q][\bar{u} \bar{d}]$	1^{++}	a_{1} (1260)
$\bar{q} q$	3^{--}	$\rho_{3}(1690), \omega_{3}(1670)$	$[q q] q$	(1/2) ${ }^{-}$	$\Delta_{\frac{1}{4}-(1620)}$	$[q q][\bar{u} d]$	2^{--}	$\rho_{2}(\sim 1700) ?$
				$(3 / 2)^{-}$	$\Delta_{\frac{3}{2}}^{\frac{1}{2}}-(1700)$			
$\bar{q} q$	4^{++}	$a_{4}(2040), f_{4}(2050)$	$[q q] q$	$(7 / 2)^{+}$	$\Delta_{z+}(1950)$	$[q q][\bar{u} \bar{d}]$	3^{++}	$a_{3}(\sim 2070) ?$
$\bar{q} s$	$0^{-(+)}$	K(495)	-	-	-	-	-	-
$\bar{q} s$	$1^{+(-)}$	$\bar{K}_{1}(1270)$	$[u d] s$	$(1 / 2)^{+}$	$\Lambda(1115)$	$[u d][\bar{s} \bar{q}]$	$0^{+(+)}$	$K_{0}^{*}(1430)$
$\bar{q} s$	$2^{-(t)}$	$K_{2}(1770)$	$[u d] s$	(1/2) ${ }^{-}$	$\Lambda(1405)$	$[u d][s \bar{s}]$	$1^{-(+)}$	$K_{1}(\sim 1700) ?$
				(3/2) ${ }^{-}$	$\Lambda(1520)$			
$\bar{s} q$	$0^{-(t)}$	$K(495)$	-	-	-	-	-	-
$\bar{s} q$	$1^{+(-)}$	$K_{1}(1270)$	$[s q] q$	$(1 / 2)^{+}$	$\Sigma(1190)$	$[s q][\bar{s} \bar{q}]$	0^{++}	$a_{0}(980)$
								$f_{0}(980)$
$\bar{s} q$	$1^{-(-)}$	$K^{*}(890)$	-	-	-	-	-	-
$\bar{s} q$	$2^{+(+)}$	$K_{2}^{*}(1430)$	$[s q] q$	$(3 / 2)^{+}$	$\Sigma(1385)$	[sq] $] \bar{q} \bar{q}]$	$1^{+(+)}$	$K_{1}(1400)$
$\bar{s} q$	$3^{-(-1}$	$K_{3}^{*}(1780)$	[sq]q	(3/2) ${ }^{-}$	$\Sigma(1670)$	[sq] [柿]	$2^{-(-)}$	$K_{2}(\sim 1700) ?$
$\bar{s} q$	$4^{+(+)}$	$K_{4}^{*}(2045)$	$[s q] q$	$(7 / 2)^{+}$	$\Sigma(2030)$	$[s q][\bar{q} \bar{q}]$	$3^{+(+)}$	$K_{3}(\sim 2070) ?$
$\bar{s} s$	0^{-+}	7 (550)	-	-	-	-	-	-
$\bar{s} s$	1^{+-}	$h_{1}(1170)$	$[s q] s$	$(1 / 2)^{+}$	$\Xi(1320)$	$[s q][\bar{s} \bar{q}]$	0^{++}	$f_{0}(1370)$
								$a_{0}(1450)$
$\bar{s} s$	2^{-+}	$T_{2}(1645)$	[sq]s	$(?)^{?}$	$\Xi(1690)$	[sq] ${ }^{\text {s }}$ q $]$	1^{-+}	$\Phi^{\prime}(1750)$?
$\bar{s} s$	1^{-}	$\Phi(1020)$	-	-	-	-	-	-
$\bar{s} s$	2^{++}	$f_{2}^{\prime}(1525)$	$[s q] s$	$(3 / 2)^{+}$	$\Xi^{*}(1530)$	[sq] ${ }^{\text {s }}$ q $\overline{]}$	1^{++}	$f_{1}(1420)$
$\bar{s} s$	3--	$\Phi_{3}(1850)$	[sq]s	(3/2) ${ }^{-}$	$\Xi(1820)$	[sq] $[\bar{s} q]$	2^{--}	$\Phi_{2}(\sim 1800) ?$
$\bar{s} s$	2^{++}	$f_{2}(1950)$	[ss]s	$(3 / 2)^{+}$	$\Omega(1672)$	$[s s][\bar{s} \bar{q}]$	$1^{+(+)}$	$K_{1}(\sim 1700)$?

New Organization of the Hadron Spectrum M. Nielsen

Some Features of $A d S / Q C D$

- Regge spectroscopy-same slope in n,Lfor mesons, baryons
- Chiral features for $m_{q}=0: \boldsymbol{m}_{\boldsymbol{\pi}}=\mathbf{o}$, chiral-invariant proton
- Hadronic LFWFs
- Counting Rules
- Connection between badron masses and $\Lambda_{\overline{M S}}$

Superconformal AdS Light-Front Holographic QCD (LFHQCD) Meson-Baryon Mass Degeneracy for $L_{M}=L_{B}+1$

Prediction from AdS/QCD: Meson LFWF

Provides Connection of Confinement to Hadron Structure
J / ψ

LFWF peaks at

where
$m_{\perp i}=\sqrt{m^{2}+k_{\perp}^{2}}$
minimum of LF

energy denominator

$$
\kappa=0.375 \mathrm{GeV}
$$

Stan Brodsky from Colliders to Cosmic Rays Center for Frontiers SUNY October I7, 2018 in Nuclear Science

Novel Features of QCD Phenomenology at High X SLAC

$$
\begin{aligned}
\mid \pi^{+}> & =\mid u \bar{d}> \\
m_{u} & =2 \mathrm{MeV} \\
m_{d} & =5 \mathrm{MeV}
\end{aligned}
$$

$$
m_{s}=95 \mathrm{MeV}
$$

$$
\left|D^{+}>=\right| c \bar{d}>
$$

$$
m_{c}=1.25 \mathrm{GeV}
$$

$\left|B^{+}>=\right| u \bar{b}>$ $m_{b}=4.2 \mathrm{GeV}$

Pion Form Factor

Pion form factor compared with data

G.F. de Téramond and S.J. Brodsky, Proc. Sci. LC2010 (2010) 029.
S.J. Brodsky, G.F. de Téramond, H.G. Dosch, J. Erlich, Phys. Rep. 584, 1 (2015). [Sec. 6.1.5]

$$
\begin{aligned}
F_{1}^{p}\left(Q^{2}\right) & =F_{\tau=3}\left(Q^{2}\right) \\
F_{1}^{n}\left(Q^{2}\right) & =-\frac{r}{3}\left[F_{\tau=3}\left(Q^{2}\right)-F_{\tau=4}\left(Q^{2}\right)\right] \\
F_{2}^{p}\left(Q^{2}\right) & =\chi_{p}\left[\left(1-\gamma_{p}\right) F_{\tau=4}\left(Q^{2}\right)+\gamma_{p} F_{\tau=6}\left(Q^{2}\right)\right] \\
F_{2}^{n}\left(Q^{2}\right) & =\chi_{n}\left[\left(1-\gamma_{n}\right) F_{\tau=4}\left(Q^{2}\right)+\gamma_{n} F_{\tau=6}\left(Q^{2}\right)\right] \\
\gamma_{p} & =0.27 \quad \gamma_{n}=0.38
\end{aligned}
$$

R.S. Sufian, G.F. de Téramond, S.J. Brodsky, A. Deur, H.G. Dosch, Phys. Rev. D 95014011 (2017).

Nucleon PDFs in comparison with global fits

$$
f(x)=\frac{1}{4 \lambda}\left[(1-x) \log \left(\frac{1}{x}\right)+a(1-x)^{2}\right]
$$

$$
w(x)=x^{1-x} e^{-a(1-x)^{2}}
$$

Parameter " a " is fixed by the first moment $a=0.531 \pm 0.037$

Evolved from the matching scale $1.06 \pm 0.15 \mathrm{GeV}$

Red bands: the uncertainties of the matching scale and the parameter " a ".
G.F. de Téramond, TL, R.S. Sufian, H.G. Dosch, S.J. Brodsky, A. Deur, Phys. Rev. Lett. 120, 182001 (2018).

Pion PDF

Prediction for pion PDF with the same $w(x)$

Evolved from the matching scale $1.1 \pm 0.2 \mathrm{GeV}$ (NLO)

$$
w(x)=x^{1-x} e^{-a(1-x)^{2}}
$$

Comparison with a new global fit by JAM [arXiv:1804.01965]

Universal gluon, extrinsic sea distibutions

Color confinement potential from AdS/QCD

$$
U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}=b_{\perp}^{2} x(1-x)
$$

Fixed $\tau=t+z / c$

$\psi_{n}\left(\vec{k}_{\perp i}, x_{i}\right) \propto \frac{1}{\kappa^{n-1}} e^{-\mathcal{M}_{n}^{2} / 2 \kappa^{2}} \prod_{j=1}^{n} \frac{1}{\sqrt{x}_{j}}$

$$
\mathcal{M}_{n}^{2}=\sum_{i=1}^{n}\left(\frac{k_{\perp}^{2}+m^{2}}{x}\right)_{i}
$$

$\psi_{n}\left(\vec{k}_{\perp i}, x_{i}\right) \propto \frac{1}{\kappa^{n-1}} e^{-\mathcal{M}_{n}^{2} / 2 \kappa^{2}} \Pi_{j=1}^{n} \frac{1}{\sqrt{x}_{j}}$
Properties of Color-Confining LFWF

- minimal $\mathcal{M}_{n}^{2}=\sum_{i=1}^{n}\left(\frac{k_{1}^{2}+m^{2}}{x}\right)_{i}$
- Maximum when $x_{i}=\propto \quad m_{\perp i}=\sqrt{m_{i}^{2}+k_{\perp i}^{2}}$
- Maximum overlap at matching rapidity

$$
y=\frac{1}{2} \log \frac{k^{+}}{k^{-}}=\log \frac{x P^{+}}{m_{\perp}}
$$

Frame independent $\quad \Delta y=y_{a}-y_{b}=\log \frac{x_{a}}{m_{\perp a}}-\log \frac{x_{b}}{m_{\perp b}}$
Relative to proton

$$
\Delta y=y_{H}-y_{p}=\log \frac{x_{H}}{m_{\perp H} / m_{p}}
$$

Feynman: Correlations with proton $\Delta y<2$

Coalesece of comovers produces high xf heavy hadrons

Spectator counting rules

$$
\frac{d N}{d x_{F}} \propto\left(1-x_{F}\right)^{2 n_{\text {spect }}-1}
$$

Coalescence of Comoving Charm and Valence Quarks Produce $J / \psi, \Lambda_{c}$ and other Charm Hadrons at High x_{F}

Workshop on Forward Physics and Instrumentation from Colliders to Cosmic Rays
Center for Frontiers SUNY October I7, 2018 in Nuclear Science

Stan Brodsky

Coalesece of comovers produces high Xf heavy hadrons

High XF hadrons combine most of the comovers, fewest spectators

$$
\psi_{H}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

LFWF maximum at equal rapidity maximum at minimal invariant mass

Spectator counting rules

$$
\frac{d N}{d x_{F}} \propto\left(1-x_{F}\right)^{2 n_{\text {spect }}-1}
$$

Coalescence of Comoving Charm and Valence Quarks
Produce $J / \psi, \Lambda_{c}$ and other Charm Hadrons at High x_{F}

Workshop on Forward Physics and Instrumentation from Colliders to Cosmic Rays
Center for Frontiers SUNY October I7, 2018 in Nuclear Science

Novel Features of QCD Phenomenology at High X

Stan Brodsky

Barger, Halzen, Keung PRD 25 (198I)

SELEX

, $\pi^{-}(\bar{u} d[c \bar{c}]) \rightarrow \Lambda_{c}(u d c)$ vs. $\pi^{-}(\bar{u} d[c \bar{c}]) \rightarrow \bar{\Lambda}_{c}(\bar{u} \bar{d} \bar{c})$

$\begin{array}{llllllllllll}0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1\end{array}$

$$
\Sigma^{-}(u d s[c \bar{c}]) \rightarrow \Lambda_{c}(u d c) \text { vs. } \Sigma^{-}(u d s[c \bar{c}]) \rightarrow \bar{\Lambda}_{c}(\bar{u} \cdot \bar{d} \bar{c})
$$

TELEX

$p(u u d c \bar{c})$
$\rightarrow \Lambda_{c}(c u d)$

$$
n_{s}=2
$$

$\left(1-x_{F}\right)^{n_{\text {spectators }}}$
$\Sigma^{-}(s d d c \bar{c}) A \rightarrow \Lambda_{c}(c d u) X$ vs. $\Sigma^{-}(s d d c \bar{c}) A \rightarrow \bar{\Lambda}_{c}(\bar{c} \bar{d} \bar{u}) X$

$$
p p \rightarrow \Lambda_{c} X \quad \Delta y=y_{p}-y_{\Lambda_{c}}<2
$$

$$
x_{\Lambda_{c}}=x_{c}+x_{u}+x_{d}
$$

Coalescence maximal at matching rapidities

Fast proton: High $x_{\Lambda_{c}}^{F}$

Rest frame proton: Iow momentum Λ_{c}

LFWF: boost invariant

CM frame

THE $\Lambda_{\mathrm{b}}{ }^{0}$ BEAUTY BARYON PRODUCTION IN PROTON-PROTON

 INTERACTIONS AT $V_{s}=62 \mathrm{GeV}$: A SECOND OBSERVATIONG. Bari, M. Basile, G. Bruni, G. Cara Romeo, R. Casaccia, L. Cifarelli, F. Cindolo, A. Contin, G. D'Alì, C. Del Papa, S. De Pasquale, P. Giusti, G. Iacobucci, G. Maccarrone, T. Massam, R. Nania, F. Palmonari, G. Sartorelli, G. Susinno, L. Votano and A. Zichichi

CERN, Geneva, Switzerland
Dipartimento di Fisica dell'Università, Bologna, Italy
Dipartimento di Fisica dell'Università, Cosenza, Italy
Istituto di Fisica dell'Università, Palermo, Italy
Istituto Nazionale di Fisica Nucleare, Bologna, Italy Istituto Nazionale di Fisica Nucleare, LNF, Frascati, Italy

Abstract

Another decay mode of the $\Lambda_{\mathrm{b}}{ }^{0}$ (open-beauty baryon) state has been observed: $\Lambda_{\mathrm{b}}{ }^{0} \rightarrow \Lambda_{\mathrm{c}}{ }^{+} \pi^{+} \pi^{-} \pi^{-}$. In addition, new results on the previously observed decay channel, $\Lambda_{\mathrm{b}}{ }^{\circ} \rightarrow \mathrm{pD}^{\circ} \pi^{-}$, are reported. These results confirm our previous findings on $\Lambda_{\mathrm{b}}{ }^{\circ}$ production at the ISR. The mass value ($5.6 \mathrm{GeV} / \mathrm{c}^{2}$) is found to be in good agreement with theoretical predictions. The production mechanism is found to be "leading".

First Evidence for Intrinsic Bottom!

$$
p p \rightarrow \Lambda_{b}(b u d) B(\bar{b} q) X \text { at large } x_{F} \quad \sqrt{s}=63 \mathrm{GeV}
$$

CERN-ISR R422 (Split Field Magnet), 1988/1991

$$
\begin{gathered}
\Lambda_{b}^{0} \rightarrow p D^{0} \pi^{-} \\
m_{\Lambda_{b}}=5.6 \mathrm{GeV}
\end{gathered}
$$

$\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{+} \pi^{-} \pi^{-}$
II Nuovo Cimento 104, 1787

First Evidence for Intrinsic Bottom!

$p p \rightarrow \Lambda_{b}(b u d) B(\bar{b} q) X$ at large $x_{F} \quad \sqrt{s}=63 \mathrm{GeV}$

CERN-ISR R422 (Split Field Magnet), 1988/1991

$$
\Lambda_{b}^{0} \rightarrow p D^{0} \pi^{-}
$$

$$
\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{+} \pi^{-} \pi^{-}
$$

Il Nuovo Cimento 104, 1787
Discovery of Λ_{b}; Associated Production; Evidence for Intrinsic $b \bar{b}$

$$
p p \rightarrow \Lambda_{b} X
$$

$$
\Delta y=y_{p}-y_{\Lambda_{b}}<2
$$

Coalescence maximal at matching rapidities

$$
x_{\Lambda_{b}}=x_{b}+x_{u}+x_{d}
$$

2016 Review of Particle Physics.

Please use this CITATION: C. Patrignani et al.(Particle Data Group), Chin. Phys. C, 40, 100001 (2016).

Λ_{b}^{0} MASS

$$
m_{\Lambda_{b}^{0}}
$$

VALUE (MeV)	EVTS		DOCUMENTID		TECN	COMMENT
5619.51 ± 0.23	OUR AVERAGE					
5619.30 ± 0.34		1	AAIJ	2014AA	LHCB	$p p$ at 7 TeV
$5620.15 \pm 0.31 \pm 0.47$		2	AALTONEN	2014B	CDF	$p \bar{p}$ at 1.96 TeV
$5619.7 \pm 0.7 \pm 1.1$		2	AAD	$2013 U$	ATLS	$p p$ at 7 TeV
$5619.44 \pm 0.13 \pm 0.38$		2	AAIJ	2013AV	LHCB	$p p$ at 7 TeV
$5621 \pm 4 \pm 3$		3	ABE	1997B	CDF	$p \bar{p}$ at 1.8 TeV
$5668 \pm 16 \pm 8$	4	4	ABREU	1996N	DLPH	$e^{+} e^{-} \rightarrow Z$
$5614 \pm 21 \pm 4$	4	4	BUSKULIC	1996L	ALEP	$e^{+} e^{-} \rightarrow Z$

${ }^{* * *}$ We do not use the following data for averages, fits, limits, etc ***

$5619.19 \pm 0.70 \pm 0.30$		2	AAIJ	2012E
LHCB	Repl. by AAIJ 2013AV			
$5619.7 \pm 1.2 \pm 1.2$	5	ACOSTA	2006	CDF

$$
p A \rightarrow \Lambda_{c} X
$$

$$
E_{p}=6.5 \mathrm{TeV}
$$

$$
\sigma_{p p \rightarrow \Lambda_{c} X} \sim 1 \% \sigma_{p p \rightarrow X}
$$

$$
\begin{aligned}
& \text { A-1 } \\
& \text { at rest }
\end{aligned}
$$

SMOG target at rest
Intrinsic heavy quark probability in the nucleon maximal at minimum off-shellness
Quarkonium produced nearly at rest - has small rapidity in target rest frame

$$
p A \rightarrow \Lambda_{b} X
$$

$E_{p}=6.5 \mathrm{TeV}$

$$
\sigma_{p p \rightarrow \Lambda_{b} X} \sim 0.1 \% \sigma_{p p \rightarrow X}
$$

SMOG target at rest

Intrinsic heavy quark probability in the nucleon maximal at minimum off-shellness
Quarkonium produced nearly at rest - has small rapidity in target rest frame

LFWF: boost invariant

CM frame

Excitation of Intrinsic Heavy Quarks in a Fixed Target

Amplitude maximal at minimal invariant mass, in target rapidity domain!

$$
x_{i} \sim \frac{m_{\perp i}}{\sum_{j}^{n} m_{\perp j}}
$$

$$
\frac{d \sigma}{d y_{J / \psi}}(p A \rightarrow J / \psi X)
$$

Heavy states produced in TARGET rapidity region

6.5 TeV p

$$
\begin{array}{r}
\sqrt{s}=\sqrt{13000}=115 \mathrm{GeV} \\
\Lambda_{b}, \Xi(c c u), \Xi(b b u) \cdots \cdots
\end{array}
$$

$$
\Delta y=y_{|Q \bar{Q}\rangle}-y_{\text {target }}=\log x_{|Q \bar{Q}\rangle}=\mathcal{O}(1)
$$

Produce $\left.J / \psi, \Upsilon, \Lambda_{c}, \Lambda_{b},|c c u>| c u, d \bar{c}\right\rangle,|c u u d d d u \bar{c}\rangle, \cdots$ Test at Smog@LHCb

$$
\frac{d \sigma}{d x_{F}}(p A \rightarrow J / \psi X) \propto A^{2 / 3}
$$

Flat x_{F} distribution explained by IC

NA3: Badier et al.

High x_{F}

 interacts on nuclear front surface
Scattering on front-face nucleon produces color-singlet ce pair

$$
\frac{d \sigma}{d x_{F}}(p A \rightarrow J / \psi X)=A^{2 / 3} \times \frac{d \sigma}{d x_{F}}(p N \rightarrow J / \psi X)
$$

NA60 pA data @ 158GeV

$$
\frac{d \sigma}{d x_{F}}(p A \rightarrow J / \psi X) \propto A^{\alpha}
$$

Clear dependence on x_{F} and
beam energy

Dramatic change in nuclear dependence

Violation of factorization in charm hadroproduction.
P. Hoyer, M. Vanttinen (Helsinki U.), U. Sukhatme (Illinois U., Chicago) . HU-TFT-90-14, May 1990. 7pp.

Published in Phys.Lett.B246:217-220,1990
IC Explains large excess of quarkonia at large x_{F}, A-dependence

Workshop on Forward Physics and Instrumentation from Colliders to Cosmic Rays
Center for Frontiers SUNY October I7, 2018 in Nuclear Science

Novel Features of QCD Phenomenology at High X

Stan Brodsky

Flat x_{F} distribution explained by IC

Workshop on Forward Physics and Instrumentation from Colliders to Cosmic Rays
Center for Frontiers SUNY October I7, 20 I 8 in Nuclear Science

Novel Features of QCD Phenomenology at High X

Stan Brodsky
S

Double Quarkonium Production at High xF

Cannot be explained by Color Drag Model

All events have $x_{\psi \psi}^{F}>0.4$!

Fig. 3. The $\psi \psi$ pair distributions are shown in (a) and (c) for the pion and proton projectiles. Similarly, the distributions of J / ψ 's from the pairs are shown in (b) and (d). Our calculations are compared with the $\pi^{-} N$ data at 150 and $280 \mathrm{GeV} / c$ [1]. The $x_{\phi \psi}$ distributions are normalized to the number of pairs from both pion beams (a) and the number of pairs from the 400 GeV proton measurement (c). The number of single J / ψ 's is twice the number of pairs.

NA3 Data

Excludes `color drag’ model

$$
\begin{gathered}
\pi A \rightarrow J / \psi J / \psi X \\
\text { R. Vogt, sjb }
\end{gathered}
$$

The probability distribution for a general n-particle intrinsic $c \bar{c}$ Fock state as a function of x and \boldsymbol{k}_{T} is written as

$$
\begin{aligned}
& \frac{d P_{\mathrm{ic}}}{\prod_{i=1}^{n} d x_{i} d^{2} k_{T, i}} \\
& \quad=N_{n} \alpha_{s}^{4}\left(M_{c \bar{c}}\right) \frac{\delta\left(\sum_{i=1}^{n} k_{T, i}\right) \delta\left(1-\sum_{i=1}^{n} x_{i}\right)}{\left(m_{h}^{2}-\sum_{i=1}^{n}\left(m_{T, i}^{2} / x_{i}\right)\right)^{2}}
\end{aligned}
$$

Production of a Double-Charm Baryon SELEX high $\mathbf{x}_{F} \quad<x_{F}>=0.33$

Hadroproduction of the Double-Charm Baryon at High X X_{F}

$$
p+A \rightarrow \Xi(c c d)^{+}+X
$$

Double Intrinsic Charm Fock State of proton

SELEX: $\Xi(c c d)^{+}(3510 \pm 2) \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+}$

Resolving the SELEX-LHCb Double-Charm Baryon Conflict: The Impact of Intrinsic Heavy-Quark Hadroproduction and Supersymmetric Light-Front Holographic QCD

S.J. Brodsky ${ }^{1}$, S. Groote ${ }^{2}$ and S. Koshkarev ${ }^{2}$
${ }^{1}$ SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309, USA
${ }^{2}$ Institute of Physics, University of Tartu, 51010 Tartu, Estonia

Abstract

In this paper we show that the intrinsic heavy-quark QCD mechanism for the hadroproduction of heavy hadrons at large x_{F} can resolve the apparent conflict between measurements of double-charm baryons by the SELEX fixed-target experiment and the LHCb experiment at the LHC collider. We show that both experiments are compatible, and that both results can be correct. The observed spectroscopy of double-charm hadrons is in agreement with the predictions of supersymmetric light front holographic QCD.

- EMC data: $c\left(x, Q^{2}\right)>30 \times$ DGLAP $Q^{2}=75 \mathrm{GeV}^{2}, x=0.42$
- High $x_{F} p p \rightarrow J / \psi X$

Rules out color drag (Pythia)

- High $x_{F} p p \rightarrow J / \psi J / \psi X$
- High $x_{F} p p \rightarrow \Lambda_{c} X$

Evidence for $I Q$

- High $x_{F} p p \rightarrow \wedge_{b} X$
- High $x_{F} p p \rightarrow$ 三(ccd) X (SELEX)

Explain Tevatron anomalies: $p \bar{p} \rightarrow \gamma c X, Z c X$
Interesting spin, charge asymmetry, threshold, spectator effects
Important corrections to B decays; Quarkonium decays
Gardner, Karliner, sjb

Why is Intrinsic Heavy Quark Phenomena Important?

- Test Fundamental QCD predictions OPE, Non-Abelian QCD Non-Abelian: $P_{Q \bar{Q}} \propto \frac{1}{M_{Q \bar{Q}}^{2}}$ Abelian: $P_{Q \bar{Q}} \propto \frac{1}{M_{Q \bar{Q}}^{4}}$
- Test non-perturbative effects
- Important for correctly identifying the gluon distribution
- High-xf open and hidden charm and bottom; discover exotic states
- Explain anomalous high pT charm jet + Y data at Tevatron
- Important source of high energy \mathbf{v} at IceCube

Novel Features of QCD Phenomenology at High X

Stan Brodsky

- IC Explains Anomalous $\alpha\left(x_{F}\right)$ not $\alpha\left(x_{2}\right)$ dependence of $p A \rightarrow J / \psi X$ (Mueller, Gunion, Tang, SJB)
- Color Octet IC Explains $A^{2 / 3}$ behavior at high x_{F} (NA3, Fermilab)
(Kopeliovitch, Schmidt, Soffer, SJB)
- IC Explains $J / \psi \rightarrow \rho \pi$ puzzle (Karliner, SJB)
- IC leads to new effects in B decay (Gardner, SJB)

Higgs production at $\mathbf{x}_{\mathrm{F}}=0.8$

Intrinsic Heary Quark Contribution

 to Inclusive 7 tiggs Production

$$
p p \rightarrow H X
$$

A1so: intrinsic strangeness, bottom, top
Higgs can have $>\mathbf{8 0 \%}$ of Proton Momentum!
New production mechanism for Higgs at the LHC AFTER: Higgs production at threshold!

Intrinsic Heavy Quark Contribution to High X_{F} Inclusive Higgs Production

Need High XF Acceptance
Most practical: Higgs to 4 mwons

Goldhaber, Kopeliovich, Schmidt, Soffer, sjb

Use LFC Magnetic Field as Downstream Muon Spectrometer

$$
p p \rightarrow H X \rightarrow \mu^{+} \mu^{-} \mu^{+} \mu^{-} X
$$

Measure exotic events at SMOG@LHCbsuch as

$$
p A \rightarrow \Upsilon+J / \psi X \rightarrow \mu^{+} \mu^{-} \mu^{+} \mu^{-} X
$$

Look for $D_{s}^{-}(\bar{c} s)$ vs. $D_{s}^{+}(c \bar{s})$ asymmetry
Reflects s vs. \bar{s} asymmetry in proton $\mid u u d c \bar{c} s \bar{s}>$ Fock LF state.

$$
p A \rightarrow J / \psi X
$$

$E_{p}=6.5 \mathrm{TeV}$

$\ddots^{\ddots} \triangle$

SMOG target at rest

$|\Delta y|<2$

Intrinsic heavy quark probability in the nucleon maximal at minimum off-shellness
Quarkonium produced nearly at rest - has small rapidity $y<2$ in target rest frame

$$
p A \rightarrow \operatorname{Tetraquark}(\mid c u \bar{c} \bar{d}>) X
$$

$E_{p}=6.5 \mathrm{TeV}$

Tetraquark

Intrinsic heavy quark probability in the nucleon maximal at minimum off-shellness
Tetraquark produced nearly at rest - has small rapidity in target rest frame

$$
p A \rightarrow \text { Pentaquark }(\mid u u d c \bar{c}>) X
$$

$E_{p}=6.5 \mathrm{TeV}$

p

Pentaquark

SMOG target at rest
Intrinsic heavy quark probability in the nucleon maximal at minimum off-shellness
Produced nearly at rest - has small rapidity in target rest frame

Charmonium Production at Threshold

Form nucleon-charmonium bound state!
$u u d c \bar{c}>$

$$
p A \rightarrow \text { Octoquark }(\mid \text { uuduudc } \bar{c}>) X
$$

$E_{p}=6.5 \mathrm{TeV}$

p

Intrinsic heavy quark probability in the nucleon maximal at minimum off-shellness
Produced nearly at rest - has small rapidity in target rest frame

Two particle correlations: CMS results

- Ridge: Distinct long range correlation in η collimated around $\Delta \Phi \approx 0$ for two hadrons in the intermediate $1<\mathrm{p}_{\mathrm{T}}, \mathrm{q}_{\mathrm{T}}<3 \mathrm{GeV}$

Possible origin of same-side CMS ridge in p p Collisions

Bjorken, Goldhaber, sjb

$$
\vec{V}=\sum_{i=1}^{N}\left[\cos 2 \phi_{i} \hat{x}+\sin 2 \phi_{i} \hat{y}\right]
$$

Possible multiparticle ridge-like correlations in very high multiplicity proton-proton collisions

Bjorken, Goldhaber, sjb

We suggest that this "ridge"-like correlation may be a reflection of the rare events generated by the collision of aligned flux tubes connecting the valence quarks in the wave functions of the colliding protons.

The "spray" of particles resulting from the approximate line source produced in such inelastic collisions then gives rise to events with a strong correlation between particles produced over a large range of both positive and negative rapidity.

Ridges correlate with scattering plane of proton!

Novel QCD

- Flavor-Dependent Anti-Shadowing;
- No nuclear structure function sum rules
- LFVacuum and Cosmological Constant: No QCD vacuum condensates
- Principle of Maximum Conformality (PMC): Eliminate renormalization ambiguity; scheme independent
- Match Perturbative and Non-Perturbative Domains
- Hadronization at Amplitude Level
- Intrinsic Heavy Quarks from AdS/QCD: Higgs at high X_{F}
- Ridge from Flux-Tube Collisions
- Baryon-to-Meson Anomaly at high P_{T}

Systematic All-Orders Method to Eliminate Renormalization-Scale and Scheme Ambiguities in Perturbative QCD

Matin Mojaza*
CP3-Origins, Danish Institute for Advanced Studies, University of Southern Denmark, DK-5230 Odense, Denmark and SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA
Stanley J. Brodsky ${ }^{\dagger}$
SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA
Xing-Gang Wu ${ }^{\ddagger}$
Department of Physics, Chongqing University, Chongqing 401331, People's Republic of China (Received 13 January 2013; published 10 May 2013)
We introduce a generalization of the conventional renormalization schemes used in dimensional regularization, which illuminates the renormalization scheme and scale ambiguities of perturbative QCD predictions, exposes the general pattern of nonconformal $\left\{\beta_{i}\right\}$ terms, and reveals a special degeneracy of the terms in the perturbative coefficients. It allows us to systematically determine the argument of the running coupling order by order in perturbative QCD in a form which can be readily automatized. The new method satisfies all of the principles of the renormalization group and eliminates an unnecessary source of systematic error.

PMC: Principle of Maximum Conformality

Implications for the $\bar{p} p \rightarrow t \bar{t} X$ asymmetry at the Tevatron

Interferes with Born term.
Small value of renormatization scale increases asymmetry, just as in QED

Xing-Gang Wu, sjb

The Renormalization Scale Ambiguity for Top-Pair Production Eliminated Using the 'Principle of Maximum Conformality' (PMC)

Top quark forward-backward asymmetry predicted by pQCD NNLO within 1σ of CDF/DO measurements using $P M C / B L M$ scale setting

Why is IQ Important for Flavor Physics?

- New perspective on fundamental nonperturbative hadron structure
- Charm structure function at high x
- Dominates high $\mathbf{x F}_{\mathrm{F}}$ charm and charmonium production
- Hadroproduction of new heavy quark states such as ccu, ccd, bee, bbb, at high x_{F}
- Intrinsic charm -- long distance contribution to penguin mechanisms for weak decay Gardner, sj
- $J / \psi \rightarrow \rho \pi \quad$ BES puzzle explained Karliner, $s j b$
- Novel Nuclear Effects from color structure of IC, Heavy Ion Collisions
- New mechanisms for high \times f Figs hadroproduction
- Dynamics of b production: LHCb

New Multi-lepton Signals

- AFTER LHCb: Fixed target program at LHC: produce exotic heavy quark states

Novel Features of QCD Phenomenology at High X

Stan Brodsky

Novel Features of QCD Phenomenology at High X

$$
\text { Fixed } \tau=t+z / c
$$

CFNS workshop on Forward Physics And Instrumentation From Colliders To Cosmic Rays

Stan Brodsky
Center for Frontiers in Nuclear Science

Stony Brook
October I7, 2018

