Novel Features of QCD Phenomenology at High X

CFNS workshop on Forward Physics And Instrumentation From Colliders To Cosmic Rays

p

Center for Frontiers in Nuclear Science Stony Brook October 17, 2018

Stan Brodsky

 \overline{Q}

Vast array of novel physics studies possible at high x

- Heavy Quark Phenomena: Intrinsic + Extrinsic
- High-x Gluon Distributions
- Exotic Heavy Quark Spectroscopy
- Higher Fock States of Proton and Nuclei
- Strangeness Asymmetry
- Novel Drell-Yan Studies
- Nuclear and Heavy Ion Effects: Ridge, baryon to meson
- Ultra-Peripheral Collisions
- Single-Spin Asymmetries
- Many Advantages of Fixed Target at LHC (AFTER and SMOG@LHCb)

$$\begin{aligned} \mathsf{H}_{LF}^{QCD} | \Psi \rangle &= M^2 | \Psi \rangle \\ x &= \frac{k^+}{P^+} = \frac{k^0 + k^3}{P^0 + P^3} \\ & & \\ P^+, \vec{P}_\perp \\ & \psi_n(x_i, \vec{k}_{\perp i}, \lambda_i) \end{aligned}$$
Eigenstate of LF Hamiltonian :
Off-shell in Invariant Mass
Measurements of badron LF
wavefunction are at fixed LF time
Like a flash photograph
$$\begin{aligned} \mathsf{Fixed} \ \tau = t + z/c \\ x_{bj} = x = \frac{k^+}{P^+} \end{aligned}$$

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

Eigenstate of LF Hamiltonian

Causal, Frame-independent. Creation Operators on Simple Vacuum, Current Matrix Elements are Overlaps of LFWFS

Wavefunction at fixed LF time: Off-Shell in Invariant Mass Eigenstate of LF Hamiltonian : all Fock states contribute

Higher Fock States of the Proton

Fixed LF time

Workshop on Forward Physics and Instrumentation from Colliders to Cosmic Rays

Center for Frontiers SUNY October 17, 2018 in Nuclear Science

Novel Features of QCD Phenomenology at High X

$$|p,S_z\rangle = \sum_{n=3} \Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)|n;\vec{k}_{\perp i},\lambda_i\rangle$$

sum over states with n=3, 4, ... constituents

The Light Front Fock State Wavefunctions

$$\Psi_n(x_i, \vec{k}_{\perp i}, \lambda_i)$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ} .

The light-cone momentum fraction

$$x_i = \frac{k_i^+}{p^+} = \frac{k_i^0 + k_i^z}{P^0 + P^z}$$

are boost invariant.

$$\sum_{i}^{n} k_{i}^{+} = P^{+}, \ \sum_{i}^{n} x_{i} = 1, \ \sum_{i}^{n} \vec{k}_{i}^{\perp} = \vec{0}^{\perp}.$$

Intrinsic heavy quarks s(x), c(x), b(x) at high x !

Fixed LF time au = t + z/c

Deuteron: Hídden Color

 $\overline{s}(x) \neq s(x)$ $\overline{u}(x) \neq \overline{d}(x)$

 $\bar{d}(x)/\bar{u}(x)$ for $0.015 \le x \le 0.35$

E866/NuSea (Drell-Yan)

$$\bar{d}(x) \neq \bar{u}(x)$$

Interactions of quarks at same rapidity in 5-quark Fock state

Intrínsic sea quarks

Measure strangeness distribution in Semi-Inclusive DIS at JLab

Is
$$s(x) = \overline{s}(x)$$
?

- Non-symmetric strange and antistrange sea?
- Non-perturbative physics

B. Q. Ma, sjb

Tag struck quark flavor in semi-inclusive DIS $ep \rightarrow e'K^+X$

Nonperturbative strange-quark sea from lattice QCD, light-front holography, and meson-baryon fluctuation models

Raza Sabbir Sufian,¹ Tianbo Liu,^{1,2,*} Guy F. de Téramond,³ Hans Günter Dosch,⁴

Stanley J. Brodsky,⁵ Alexandre Deur,¹ Mohammad T. Islam,⁶ and Bo-Qiang Ma^{7,8,9}

(HLFHS Collaboration)

HERMES: Two components to s(x,Q²)!

Comparison of the HERMES $x(s(x) + \bar{s}(x))$ data with the calculations based on the BHPS model. The solid and dashed curves are obtained by evolving the BHPS result to $Q^2 = 2.5 \text{ GeV}^2$ using $\mu = 0.5 \text{ GeV}$ and $\mu = 0.3 \text{ GeV}$, respectively. The normalizations of the calculations are adjusted to fit the data at x > 0.1 with statistical errors only, denoted by solid circles.

 $s(x, Q^2) = s(x, Q^2)_{\text{extrinsic}} + s(x, Q^2)_{\text{intrinsic}}$

Do heavy quarks exist in the proton at high x?

Conventional wisdom: gluon splitting

g

Heavy quarks generated only at low x via DGLAP evolution from gluon splitting

Maximally off-shell - requires low x, high W²

 $s(x, \mu_F^2) = c(x, \mu_F^2) = b(x, \mu_F^2) \equiv 0$ at starting scale $Q_0^2 = \mu_F^2$

Conventional wisdom is wrong even in QED!

Fixed LF time

Proton Self Energy Intrínsíc Heavy Quarks

Probability (QED) $\propto \frac{1}{M_{e}^{4}}$

Probability (QCD) $\propto \frac{1}{M_O^2}$

Rigorous OPE Analysis

Collins, Ellis, Gunion, Mueller, sjb M. Polyakov, et al. Proton 5-quark Fock State: Intrinsic Heavy Quarks QCD predicts Intrinsic Heavy Qp Quarks at high x! ()**Minimal off-shellness** $x_Q \propto (m_Q^2 + k_\perp^2)^{1/2}$ Maximum at Equal rapidity! Probability (QCD) $\propto \frac{1}{M_O^2}$ Probability (QED) $\propto \frac{1}{M_{e}^{4}}$ **Rigorous OPE** Collins, Ellis, Gunion, Mueller, sjb Polyakov, et al.

Analysis

Two Components (separate evolution): $c(x, Q^2) = c(x, Q^2)_{\text{extrinsic}} + c(x, Q^2)_{\text{intrinsic}}$

Bednyakov, Lykasov, Smiesko, Tokar, sjb

Hoyer, Peterson, Sakai, sjb

RĒ

P

Intrínsic Heavy-Quark Fock

- **Rigorous prediction of QCD, OPE**
- Color-Octet Color-Octet Fock State
- **Probability** $P_{Q\bar{Q}} \propto \frac{1}{M_Q^2}$ $P_{Q\bar{Q}Q\bar{Q}} \sim \alpha_s^2 P_{Q\bar{Q}}$ $P_{c\bar{c}/p} \simeq 1\%$
- Large Effect at high x
- Greatly increases kinematics of colliders such as Higgs production
- Underestimated in conventional parameterizations of heavy quark distributions
- Many EIC, LHC tests (LHCb SMOG)

 $\Delta\sigma(\bar{p}p \to \gamma cX)$ $\Delta \sigma(\bar{p}p \to \gamma bX)$ **Ratio is insensitive** to gluon PDF, scales

 $qc \rightarrow \gamma c$

Signal for significant intrinsic charm

Mesropian, Bandurin

LHC:
$$pp \to Z^0 cX$$

Boettcher, Ilten, Williams

V,M,Abazov, et al. (D0) Phys.Lett. B719 A.V.Lipatov, G.I.Lykasov, Yu.Yu.Stepanenko, (2013) 354. V.A.Bednyakov,

$$\frac{\sigma(pp \to \gamma cX)}{\sigma(pp \to \gamma bX)}$$

V.A.Bednyakov, Phys.Rev. D94,053011 (2016); S.J.Brodsky, V.A.Bednyakov, G.I.Lykasov, J.Smiesko, S.Tokar, arXiv:1612.01351, Prog. Part.Nucl.Phys. in press

Nonperturbative strange-quark sea from lattice QCD, light-front holography, and meson-baryon fluctuation models

Raza Sabbir Sufian,¹ Tianbo Liu,^{1,2,*} Guy F. de Téramond,³ Hans Günter Dosch,⁴

Stanley J. Brodsky,⁵ Alexandre Deur,¹ Mohammad T. Islam,⁶ and Bo-Qiang Ma^{7,8,9}

(HLFHS Collaboration)

Analytic, defined at all scales, IR Fixed Point

AdS/QCD dilaton captures the higher twist corrections to effective charges for Q < 1 GeV

$$e^{\varphi} = e^{+\kappa^2 z}$$

 $\mathbf{2}$

Deur, de Teramond, sjb

de Tèramond, Dosch, sjb

AdS/QCD Soft-Wall Model

Single schemeindependent fundamental mass scale

 κ

 $\zeta^2 = x(1-x)\mathbf{b}^2_{\perp}$.

Light-Front Holography

Unique

Confinement Potential!

Conformal Symmetry

of the action

$$\left[-\frac{d^2}{d\zeta^2} + \frac{1-4L^2}{4\zeta^2} + U(\zeta)\right]\psi(\zeta) = \mathcal{M}^2\psi(\zeta)$$

Light-Front Schrödinger Equation $U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L + S - 1)$

 $\kappa \simeq 0.6 \ GeV$

Confinement scale:

($m_q=0$) $1/\kappa \simeq 1/3 \ fm$

de Alfaro, Fubini, Furlan:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

de Tèramond, Dosch, Lorce, sjb

Superconformal Algebra 2X2 Hadronic Multiplets

Baryon (two components)

Superconformal algebra

2 X 2 Matrix Representations: Mass-Degenerate Hadronic Eigensolutions

$$\begin{pmatrix} \phi_M(L_M = L_B + 1) & \psi_{B-}(L_B + 1) \\ \psi_{B+}(L_B) & \phi_T(L_T = L_B) \end{pmatrix}$$

Hadron Spectrum in LF Holography

3

New Organization of the Hadron Spectrum M. Nielsen

	Meson			Baryon			Tetraquark			
	q-cont	$J^{P(C)}$	Name	q-cont	J^p	Name	q-cont	$J^{P(C)}$	Name	
	qq	0-+	$\pi(140)$	_			_		_	
	$\bar{q}q$	1+-	$b_1(1235)$	[ud]q	$(1/2)^+$	N(940)	$[ud][\bar{u}\bar{d}]$	0++	$f_0(980)$	
	$\bar{q}q$	2^{-+}	$\pi_2(1670)$	[ud]q	$(1/2)^{-}$	$N_{1-}(1535)$	$[ud][\bar{u}\bar{d}]$	1-+	$\pi_1(1400)$	
					$(3/2)^{-}$	$N_{\underline{a}}^{2}$ (1520)			$\pi_1(1600)$	
	āg	1	$\rho(770), \omega(780)$							
	$\bar{q}q$	2++	$a_2(1320), f_2(1270)$	[qq]q	$(3/2)^+$	$\Delta(1232)$	$[qq][\bar{u}\bar{d}]$	1++	$a_1(1260)$	
	$\bar{q}q$	3	$\rho_3(1690), \ \omega_3(1670)$	[qq]q	$(1/2)^{-}$	$\Delta_{\frac{1}{8}}$ (1620)	$[qq][\bar{u}d]$	2	$\rho_2(\sim 1700)?$	
					$(3/2)^{-}$	$\Delta_{\underline{a}}^{2}$ (1700)				
	$\bar{q}q$	4++	$a_4(2040), f_4(2050)$	[qq]q	$(7/2)^+$	$\Delta_{2^{+}(1950)}^{2}$	$[qq][\bar{u}\bar{d}]$	3++	$a_3 (\sim 2070)?$	
	$\bar{q}s$	0-(+)	K(495)	_	_	- [*] -	_	_	_	
	$\bar{q}s$	1+(-)	$\bar{K}_{1}(1270)$	[ud]s	$(1/2)^+$	Λ(1115)	$[ud][\bar{s}\bar{q}]$	0+(+)	$K_0^*(1430)$	
	$\bar{q}s$	$2^{-(+)}$	$K_2(1770)$	[ud]s	$(1/2)^{-}$	Λ(1405)	$[ud][\bar{s}\bar{q}]$	1-(+)	$K_1^* (\sim 1700)?$	
					$(3/2)^{-}$	$\Lambda(1520)$				
	āq	0-(+)	K(495)	_	_		_	_	_	
	$\bar{s}q$	1+(-)	$K_1(1270)$	[sq]q	$(1/2)^+$	$\Sigma(1190)$	$[sq][\bar{s}\bar{q}]$	0++	$a_0(980)$	
									$f_0(980)$	
	āq	1-(-)	K*(890)		_			_		
	āq	2+(+)	$K_{2}^{*}(1430)$	[sq]q	$(3/2)^+$	$\Sigma(1385)$	$[sq][\bar{q}\bar{q}]$	1+(+)	$K_1(1400)$	
	\overline{sq}	3-(-)	$K_{3}^{*}(1780)$	sq q	(3/2)-	$\Sigma(1670)$	$sq[\bar{q}\bar{q}]$	2-(-)	$K_2(\sim 1700)?$	
	$\overline{s}q$	4+(+)	$K_{4}^{*}(2045)$	sq q	$(7/2)^+$	$\Sigma(2030)$	$sq \bar{q}\bar{q}$	3+(+)	$K_{3}(\sim 2070)?$	
	38	0-+	$\eta(550)$					_	_	
	88	1+-	$h_1(1170)$	[sq]s	$(1/2)^+$	$\Xi(1320)$	$[sq][\bar{s}\bar{q}]$	0++	$f_0(1370)$	
	_	0	(10.15)		(2)?	E(1000)	()()		$a_0(1450)$	
	88	2-+	$\eta_2(1645)$	[sq]s	(?)	Ξ(1690)	[sq][sq]	1-+	$\Phi'(1750)?$	
	88	1	$\Phi(1020)$ H(1525)	[aa]a	(9 (9)+	C*(1520)	[00][00]	1++	6 (1490)	
	88	2	$J_2(1525)$ = (1850)	[sq]s	$(3/2)^{-}$	≡ (1550) □(1890)	[sq][sq]	9	$f_1(1420)$ $= \frac{1}{2}$	
	88	2++	f ₂ (1050)	[89]8 [88]8	(3/2)+	$\Omega(1672)$	[sq][sq] [ss][sī]	2	$\frac{\Psi_2}{K_1} \sim \frac{1000}{2}$	
	M		J2(2000)			n(1012)	[an][nd]			
rieson				Daryon			ietraquark			

Some Features of AdS/QCD

- Regge spectroscopy—same slope in n,L for mesons, baryons
- Chiral features for $m_q=0$: $m_{\pi}=0$, chiral-invariant proton
- Hadronic LFWFs
- Counting Rules
- Connection between hadron masses and $\Lambda_{\overline{MS}}$

Superconformal AdS Light-Front Holographic QCD (LFHQCD)

Meson-Baryon Mass Degeneracy for L_M=L_B+1

Workshop on Forward Physics and Instrumentation from Colliders to Cosmic Rays

Center for Frontiers SUNY October 17, 2018 in Nuclear Science

Novel Features of QCD Phenomenology at High X

Prediction from AdS/QCD: Meson LFWF

Provídes Connection of Confinement to Hadron Structure

 J/ψ

LFWF peaks at

$$x_i = \frac{m_{\perp i}}{\sum_{j}^{n} m_{\perp j}}$$
where

$$m_{\perp i} = \sqrt{m^2 + k_{\perp}^2}$$

mínímum of LF energy denomínator

 $\kappa = 0.375 \,\, {
m GeV}$

Workshop on Forward Physics and Instrumentation from Colliders to Cosmic Rays

Center for Frontiers SUNY October 17, 2018 in Nuclear Science

Pion Form Factor

Pion form factor compared with data

G.F. de Téramond and S.J. Brodsky, Proc. Sci. LC2010 (2010) 029. S.J. Brodsky, G.F. de Téramond, H.G. Dosch, J. Erlich, Phys. Rep. 584, 1 (2015). [Sec. 6.1.5]

$$F_1^p(Q^2) = F_{\tau=3}(Q^2)$$

$$F_1^n(Q^2) = -\frac{r}{3}[F_{\tau=3}(Q^2) - F_{\tau=4}(Q^2)]$$

$$F_2^p(Q^2) = \chi_p[(1 - \gamma_p)F_{\tau=4}(Q^2) + \gamma_pF_{\tau=6}(Q^2)]$$

$$F_2^n(Q^2) = \chi_n[(1 - \gamma_n)F_{\tau=4}(Q^2) + \gamma_nF_{\tau=6}(Q^2)]$$

$$\gamma_p = 0.27 \qquad \gamma_n = 0.38$$

R.S. Sufian, G.F. de Téramond, S.J. Brodsky, A. Deur, H.G. Dosch, Phys. Rev. D 95 014011 (2017). Nucleon PDFs in comparison with global fits

Red bands: the uncertainties of the matching scale and the parameter "a".

G.F. de Téramond, TL, R.S. Sufian, H.G. Dosch, S.J. Brodsky, A. Deur, Phys. Rev. Lett. 120, 182001 (2018).
Pion PDF

Universal gluon, extrinsic sea distibutions

Color confinement potential from AdS/QCD

 $\mathcal{M}_{n}^{2} = \sum_{i=1}^{n} \left(\frac{k_{\perp}^{2} + m^{2}}{x}\right)_{i}$

$$\psi_n(\vec{k}_{\perp i}, x_i) \propto \frac{1}{\kappa^{n-1}} e^{-\mathcal{M}_n^2/2\kappa^2} \prod_{j=1}^n \frac{1}{\sqrt{x_j}}$$

Properties of Color-Confining LFWF

- minimal $\mathcal{M}_n^2 = \sum_{i=1}^n \left(\frac{k_\perp^2 + m^2}{x}\right)_i$
- Maximum when $x_i = \propto m_{\perp i} = \sqrt{m_i^2 + k_{\perp i}^2}$
- Maximum overlap at matching rapidity

$$y = \frac{1}{2} \log \frac{k^+}{k^-} = \log \frac{xP^+}{m_\perp}$$

Frame independent $\Delta y = y_a - y_b = \log \frac{x_a}{m_{\perp a}} - \log \frac{x_b}{m_{\perp b}}$

Relative to proton

$$\Delta y = y_H - y_p = \log \frac{x_H}{m_{\perp H}/m_p}$$

Feynman: Correlations with proton $\Delta y < 2$

Coalesece of comovers produces high x_F heavy hadrons

Coalescence of Comoving Charm and Valence Quarks Produce J/ψ , Λ_c and other Charm Hadrons at High x_F

Workshop on Forward Physics and Instrumentation from Colliders to Cosmic Rays Center for Frontiers SUNY October 17, 2018 in Nuclear Science

Coalesece of comovers produces high x_F heavy hadrons

High x_F hadrons combine most of the comovers, fewest spectators

Coalescence of Comoving Charm and Valence Quarks Produce J/ψ , Λ_c and other Charm Hadrons at High x_F

Workshop on Forward Physics and Instrumentation from Colliders to Cosmic Rays Center for Frontiers SUNY October 17, 2018 in Nuclear Science

Novel Features of QCD Phenomenology at High X

Vogt, sjb

Barger, Halzen, Keung PRD 25 (1981)

 $\Sigma^{-}(sddc\bar{c})A \to \Lambda_{c}(cdu)X$ vs. $\Sigma^{-}(sddc\bar{c})A \to \bar{\Lambda}_{c}(\bar{c}d\bar{u})X$

Coalescence maximal at matching rapidities

Fast proton:

High $x_{\Lambda_a}^F$

Rest frame proton: low momentum Λ_c

27 Way 1991

CM-P00063074

THE Λ_b^{o} BEAUTY BARYON PRODUCTION IN PROTON-PROTON INTERACTIONS AT $\sqrt{s}=62$ GeV: A SECOND OBSERVATION

G. Bari, M. Basile, G. Bruni, G. Cara Romeo, R. Casaccia, L. Cifarelli,
F. Cindolo, A. Contin, G. D'Alì, C. Del Papa, S. De Pasquale, P. Giusti,
G. Iacobucci, G. Maccarrone, T. Massam, R. Nania, F. Palmonari,
G. Sartorelli, G. Susinno, L. Votano and A. Zichichi

CERN, Geneva, Switzerland Dipartimento di Fisica dell'Università, Bologna, Italy Dipartimento di Fisica dell'Università, Cosenza, Italy Istituto di Fisica dell'Università, Palermo, Italy Istituto Nazionale di Fisica Nucleare, Bologna, Italy Istituto Nazionale di Fisica Nucleare, LNF, Frascati, Italy

Abstract

Another decay mode of the Λ_b^{o} (open-beauty baryon) state has been observed: $\Lambda_b^{o} \rightarrow \Lambda_c^{+} \pi^{+} \pi^{-} \pi^{-}$. In addition, new results on the previously observed decay channel, $\Lambda_b^{o} \rightarrow p D^{o} \pi^{-}$, are reported. These results confirm our previous findings on Λ_b^{o} production at the ISR. The mass value (5.6 GeV/c²) is found to be in good agreement with theoretical predictions. The production mechanism is found to be "leading".

First Evidence for Intrinsic Bottom!

$pp \to \Lambda_b(bud)B(\bar{b}q)X$ at large $x_F \quad \sqrt{s} = 63 \ GeV$

CERN-ISR R422 (Split Field Magnet), 1988/1991

First Evidence for Intrinsic Bottom!

$pp \to \Lambda_b(bud)B(\overline{b}q)X$ at large $x_F \quad \sqrt{s} = 63 \ GeV$

CERN-ISR R422 (Split Field Magnet), 1988/1991

Coalescence maximal at matching rapidities $x_{\Lambda_b} = x_b + x_u + x_d$

2016 Review of Particle Physics. Please use this CITATION: C. Patrignani *et al.*(Particle Data Group), Chin. Phys. C, **40**, 100001 (2016).

Λ_b^0 MASS

$m_{\Lambda_b^0}$	INSPI

EVTS	DOCUMENT ID		TECN	COMMENT	
5619.51 ± 0.23 OUR AVERAGE					
	1 AAIJ	2014AA	LHCB	p p at 7 TeV	
	² AALTONEN	2014B	CDF	$p \ \overline{p}$ at 1.96 TeV	
	2 AAD	2013U	ATLS	$p \ p$ at 7 TeV	
	2 AAIJ	2013AV	LHCB	p p at 7 TeV	
	³ ABE	1997B	CDF	$p \ \overline{p}$ at 1.8 TeV	
4	4 ABREU	1996N	DLPH	$e^+ e^- \rightarrow Z$	
4	4 BUSKULIC	1996L	ALEP	$e^+ e^- \rightarrow Z$	
*** We do not use the following data for averages, fits, limits, etc ***					
	2 AAIJ	2012E	LHCB	Repl. by AAIJ 2013AV	
	5 ACOSTA	2006	CDF	Repl. by AALTONEN 2014B	
	⁶ ABE	1993B	CDF	Repl. by ABE 1997B	
16	7 ALBAJAR	1991E	UA1	$p \ \overline{p}$ 630 GeV	
52	BARI	1991	SFM	$\Lambda_b^0 \to p D^0 \pi^-$	
90	BARI	1991	SFM	$\Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^-$	
	EVTS OUR AVE 4 4 g data for av 16 52 90	EVTSDOCUMENT IDOUR AVERAGE1AAIJ2AALTONEN2AAD2AAD2AAIJ3ABE44444490BARI	EVTS DOCUMENT ID OUR AVERAGE 1 AAIJ 2014AA 2 AALTONEN 2014B 2 2 AAD 2013U 2 2 AAD 2013U 2 2 AAIJ 2013AV 3 3 ABE 1997B 4 4 ABREU 1996N 4 4 BUSKULIC 1996L 1996L 1996L g data for averages, fits, limits, etc **** 2 AAIJ 2012E 5 5 ACOSTA 2006 6 ABE 1993B 16 7 ALBAJAR 1991E 1991 90 BARI 1991 1991	EVTSDOCUMENT IDTECNOUR AVERAGE1AAIJ2014AALHCB2AALTONEN2014BCDF2AAD2013UATLS2AAIJ2013AVLHCB3ABE1997BCDF44ABREU1996NDLPH44BUSKULIC1996LALEPg data for averages, fits, limits, etc ***2AAIJ2012ELHCB5ACOSTA2006CDF6ABE1993BCDF167ALBAJAR1991EUA152BARI1991SFM90BARI1991SFM	

 $pA \to \Lambda_c X$

Intrinsic heavy quark probability in the nucleon maximal at minimum off-shellness

Quarkonium produced nearly at rest — has small rapidity in target rest frame

 $pA \to \Lambda_b X$

Intrinsic heavy quark probability in the nucleon maximal at minimum off-shellness

Quarkonium produced nearly at rest — has small rapidity in target rest frame

Excitation of Intrinsic Heavy Quarks in a Fixed Target

Amplitude maximal at minimal invariant mass, in target rapidity domain!

 $x_i \sim \frac{m_{\perp i}}{\sum_j^n m_{\perp j}} \qquad \qquad \frac{d\sigma}{dy_{J/\psi}} (pA \to J/\psi X)$

Heavy states produced in TARGET rapidity region

Test at Smog@LHCb

Flat x_F distribution explained by IC

NA3: Badier et al.

Color-Opaque IC Fock state s interacts on nuclear front surface

Kopeliovich, Schmidt, Soffer, sjb

@ 158GeV

M. Leitch

$$\frac{d\sigma}{dx_F}(pA \to J/\psi X)$$

Remarkably Strong Nuclear Dependence for Fast Charmoníum

Violation of PQCD Factorization

Violation of factorization in charm hadroproduction. <u>P. Hoyer, M. Vanttinen (Helsinki U.)</u>, <u>U. Sukhatme</u> (<u>Illinois U., Chicago</u>). HU-TFT-90-14, May 1990. 7pp. Published in Phys.Lett.B246:217-220,1990

IC Explains large excess of quarkonia at large x_F, A-dependence

Workshop on Forward Physics and Instrumentation from Colliders to Cosmic Rays

Center for Frontiers SUNY October 17, 2018 in Nuclear Science

Flat x_F distribution explained by IC

Workshop on Forward Physics and Instrumentation from Colliders to Cosmic Rays

Center for Frontiers SUNY October 17, 2018 in Nuclear Science

Double Quarkonium Production at High xF

Cannot be explained by Color Drag Model All events have $x_{\psi\psi}^F > 0.4$!

Excludes `color drag' model

 $\pi A \rightarrow J/\psi J/\psi X$

R. Vogt, sjb

The probability distribution for a general *n*-particle intrinsic $c\overline{c}$ Fock state as a function of x and k_T is written as

$$\frac{dP_{ic}}{\prod_{i=1}^{n} dx_{i}d^{2}k_{T,i}}$$

= $N_{n}\alpha_{s}^{4}(M_{c\overline{c}}) \frac{\delta(\sum_{i=1}^{n} k_{T,i})\delta(1-\sum_{i=1}^{n} x_{i})}{(m_{h}^{2}-\sum_{i=1}^{n}(m_{T,i}^{2}/x_{i}))^{2}}$

Fig. 3. The $\psi\psi$ pair distributions are shown in (a) and (c) for the pion and proton projectiles. Similarly, the distributions of J/ψ 's from the pairs are shown in (b) and (d). Our calculations are compared with the $\pi^- N$ data at 150 and 280 GeV/c [1]. The $x_{\psi\psi}$ distributions are normalized to the number of pairs from both pion beams (a) and the number of pairs from the 400 GeV proton measurement (c). The number of single J/ψ 's is twice the number of pairs.

NA₃ Data

Workshop on Forward Physics and Instrumentation from Colliders to Cosmic Rays Center for Frontiers SUNY October 17, 2018

in Nuclear Science

Production of a Double-Charm Baryon SELEX high $\mathbf{x}_{\mathbf{F}}$ $< x_F >= 0.33$

Workshop on Forward Physics and Instrumentation from Colliders to Cosmic Rays

Center for Frontiers **SUNY October 17, 2018** in Nuclear Science

Resolving the SELEX–LHCb Double-Charm Baryon Conflict: The Impact of Intrinsic Heavy-Quark Hadroproduction and Supersymmetric Light-Front Holographic QCD

S.J. Brodsky¹, S. Groote² and S. Koshkarev²

¹ SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309, USA

² Institute of Physics, University of Tartu, 51010 Tartu, Estonia

Abstract

In this paper we show that the intrinsic heavy-quark QCD mechanism for the hadroproduction of heavy hadrons at large x_F can resolve the apparent conflict between measurements of double-charm baryons by the SELEX fixed-target experiment and the LHCb experiment at the LHC collider. We show that both experiments are compatible, and that both results can be correct. The observed spectroscopy of double-charm hadrons is in agreement with the predictions of supersymmetric light front holographic QCD.

- EMC data: $c(x,Q^2) > 30 \times \text{DGLAP}$ $Q^2 = 75 \text{ GeV}^2$, x = 0.42
- High $x_F \ pp \to J/\psi X$
- High $x_F \ pp \rightarrow J/\psi J/\psi X$
- High $x_F \ pp \to \Lambda_c X$
- High $x_F pp \rightarrow \Lambda_b X$
- High $x_F pp \rightarrow \Xi(ccd)X$ (SELEX)

Explain Tevatron anomalies: $p\bar{p} \rightarrow \gamma cX, ZcX$ Interesting spin, charge asymmetry, threshold, spectator effects Important corrections to B decays; Quarkonium decays Gardner, Karliner, sjb

Rules out color drag (Pythia)

Why is Intrinsic Heavy Quark Phenomena Important?

- Test Fundamental QCD predictions OPE, Non-Abelian QCD Non-Abelian: $P_{Q\bar{Q}} \propto \frac{1}{M_{Q\bar{Q}}^2}$ Abelian: $P_{Q\bar{Q}} \propto \frac{1}{M_{Q\bar{Q}}^4}$
- Test non-perturbative effects
- Important for correctly identifying the gluon distribution
- High-x_F open and hidden charm and bottom; discover exotic states
- Explain anomalous high pT charm jet + γ data at Tevatron
- Important source of high energy v at IceCube

• IC Explains Anomalous $\alpha(x_F)$ not $\alpha(x_2)$ dependence of $pA \rightarrow J/\psi X$ (Mueller, Gunion, Tang, SJB)

• Color Octet IC Explains $A^{2/3}$ behavior at high x_F (NA3, Fermilab) Color Opaqueness (Kopeliovitch, Schmidt, Soffer, SJB)

• IC Explains $J/\psi \rightarrow \rho \pi$ puzzle (Karliner, SJB)

• IC leads to new effects in *B* decay (Gardner, SJB)

Higgs production at x_F = 0.8

Workshop on Forward Physics and Instrumentation from Colliders to Cosmic Rays

Center for Frontiers SUNY October 17, 2018 in Nuclear Science

Goldhaber, Kopeliovich, Schmidt, Soffer, sjb

Intrínsic Heavy Quark Contribution to Inclusive Higgs Production

Also: intrinsic strangeness, bottom, top

Higgs can have > 80% of Proton Momentum! New production mechanism for Higgs at the LHC AFTER: Higgs production at threshold!

Intrinsic Heavy Quark Contribution to High x_F Inclusive Higgs Production

Use LHC Magnetic Field as Downstream Muon Spectrometer

Look for $D_s^-(\bar{c}s)$ vs. $D_s^+(c\bar{s})$ asymmetry

Reflects s vs. \bar{s} asymmetry in proton $|uudc\bar{c}s\bar{s}\rangle$ Fock LF state.

 $pA \to J/\psi X$

Intrinsic heavy quark probability in the nucleon maximal at minimum off-shellness

Quarkonium produced nearly at rest — has small rapidity y < 2 in target rest frame

$$pA \rightarrow Tetraquark(|cu\bar{c}\bar{d} >)X$$

Intrinsic heavy quark probability in the nucleon maximal at minimum off-shellness

Tetraquark produced nearly at rest — has small rapidity in target rest frame

$pA \rightarrow Pentaquark(|uudc\bar{c} >)X$

Intrinsic heavy quark probability in the nucleon maximal at minimum off-shellness

Produced nearly at rest — has small rapidity in target rest frame

Charmonium Production at Threshold

$\gamma \ d \to [J/\psi \ n] \ p \qquad \qquad \gamma \ d \to [J/\psi \ p] \ n$

Form nucleon-charmonium bound state!

 $|uudc\bar{c}>$

Workshop on Forward Physics and Instrumentation from Colliders to Cosmic Rays

Center for Frontiers SUNY October 17, 2018 in Nuclear Science

Novel Features of QCD Phenomenology at High X

$pA \rightarrow Octoquark(|uuduudc\bar{c} >)X$

Intrinsic heavy quark probability in the nucleon maximal at minimum off-shellness

Produced nearly at rest — has small rapidity in target rest frame

Raju Venugopalan

Two particle correlations: CMS results

 Ridge: Distinct long range correlation in η collimated around ΔΦ≈ 0 for two hadrons in the intermediate 1 < p_T, q_T < 3 GeV

Possible origin of same-side CMS ridge in p p Collisions

Bjorken, Goldhaber, sjb

Possible multiparticle ridge-like correlations in very high multiplicity proton-proton collisions

Bjorken, Goldhaber, sjb

We suggest that this "ridge"-like correlation may be a reflection of the rare events generated by the collision of aligned flux tubes connecting the valence quarks in the wave functions of the colliding protons.

The "spray" of particles resulting from the approximate line source produced in such inelastic collisions then gives rise to events with a strong correlation between particles produced over a large range of both positive and negative rapidity. **Collisions of Aligned Flux Tubes produce high multiplicity events**

Brown, Glazek, Goldhaber, sjb

Ridges correlate with scattering plane of proton!

- Flavor-Dependent Anti-Shadowing;
- No nuclear structure function sum rules
- LF Vacuum and Cosmological Constant: No QCD vacuum condensates
- Principle of Maximum Conformality (PMC): Eliminate renormalization ambiguity; scheme independent
- Match Perturbative and Non-Perturbative Domains
- Hadronization at Amplitude Level
- Intrinsic Heavy Quarks from AdS/QCD: Higgs at high x_F
- Ridge from Flux-Tube Collisions
- Baryon-to-Meson Anomaly at high P_T

Workshop on Forward Physics and Instrumentation from Colliders to Cosmic Rays Center for Frontiers SUNY October 17, 2018 in Nuclear Science

Novel Features of QCD Phenomenology at High X

Ş

Systematic All-Orders Method to Eliminate Renormalization-Scale and Scheme Ambiguities in Perturbative QCD

Matin Mojaza*

CP3-Origins, Danish Institute for Advanced Studies, University of Southern Denmark, DK-5230 Odense, Denmark and SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA

Stanley J. Brodsky[†]

SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA

Xing-Gang Wu[‡]

Department of Physics, Chongqing University, Chongqing 401331, People's Republic of China (Received 13 January 2013; published 10 May 2013)

We introduce a generalization of the conventional renormalization schemes used in dimensional regularization, which illuminates the renormalization scheme and scale ambiguities of perturbative QCD predictions, exposes the general pattern of nonconformal $\{\beta_i\}$ terms, and reveals a special degeneracy of the terms in the perturbative coefficients. It allows us to systematically determine the argument of the running coupling order by order in perturbative QCD in a form which can be readily automatized. The new method satisfies all of the principles of the renormalization group and eliminates an unnecessary source of systematic error.

PMC: Principle of Maximum Conformality

Implications for the $\bar{p}p \to t\bar{t}X$ asymmetry at the Tevatron

Small value of renormalization scale increases asymmetry, just as in QED

Xing-Gang Wu, sjb

The Renormalization Scale Ambiguity for Top-Pair Production Eliminated Using the 'Principle of Maximum Conformality' (PMC)

Top quark forward-backward asymmetry predicted by pQCD NNLO within 1 $_{\rm 0}$ of CDF/D0 measurements using PMC/BLM scale setting

Why is IQ Important for Flavor Physics?

- New perspective on fundamental nonperturbative hadron structure
- Charm structure function at high x
- Dominates high x_F charm and charmonium production
- Hadroproduction of new heavy quark states such as ccu, ccd, bcc, bbb, at high x_F
- Intrinsic charm -- long distance contribution to penguin mechanisms for weak decay
 Gardner, sjb
- $J/\psi
 ightarrow
 ho\pi$ BES puzzle explained Karliner , sjb
- Novel Nuclear Effects from color structure of IC, Heavy Ion Collisions
- New mechanisms for high x_F Higgs hadroproduction
- Dynamics of b production: LHCb

 New Multi-lepton Signals
 AFTER LHCb: Fixed target program at LHC: produce exotic heavy quark states

Workshop on Forward Physics and Instrumentation from Colliders to Cosmic Rays

Center for Frontiers SUNY October 17, 2018 in Nuclear Science

Novel Features of QCD Phenomenology at High X

Novel Features of QCD Phenomenology at High X

CFNS workshop on Forward Physics And Instrumentation From Colliders To Cosmic Rays

p

Center for Frontiers in Nuclear Science Stony Brook October 17, 2018

Stan Brodsky

 \overline{Q}