PHYSICS WITH THE ATLAS ZDC: HADRONIC AND EM PROCESSES

Peter Steinberg, BNL

Forward Physics And Instrumentation From Colliders To Cosmic Rays, SBU 19 October 2018

ATLAS forward region: Run I

ATLAS forward region: Run 2

ATLAS ZDC Design

Full ZDC detector has 4 modules, each with depth of I nuclear interaction length

Showers produce Cerenkov light in d=1.5mm vertical quartz rods (GE214) sandwiched betweenIcm tungsten plates

Some spatial information provided by Imm longitudinal bent rods, read out by I0mm RI635 PMTs: **EM module** has 8x8 grid **HadXY module** has 8x10 grid, grouped into 24 regions

ATLAS

ATLAS ZDC in Run 1&2

In 2013 and 2016 p+Pb running, LHCf replaced segmented EM module

2011 pp running damaged quartz, so all rods replaced for 2013 & 2015 running

ATLAS ZDC: goals

Primary purpose: event triggering and centrality confirmation in hadronic heavy ion collisions

Coincidence of ZDCs suppresses ultraperipheral EM processes.
 Strong correlation between ZDC energy & forward calorimeter E_T confirms basic assumptions of centrality analysis in Pb+Pb.
 Essential for triggering on hadronic heavy ion collisions.

Single ZDC spectrum

 $\sigma/E_{1n} \sim 16\%$: 4+ neutrons clearly visible, and then continuum, which ends where ZDC-FCal correlation turns over

ATLAS ZDC: goals

- Vetoing on ZDC coincidence enhances EM processes!
 - gamma-gamma and gamma-nucleus processes

no ZDC signal

single-arm ZDC

Distinguishing EM processes

ZDC topology roughly distinguishes Y+Y (0 ZDC), Y+Pb (1 ZDC), Pb+Pb (2 ZDC)

ATLAS

Practical considerations

- Additional soft photon exchange
 - Even in **YY** UPC processes (no neutrons), STARLIGHT predicts breakup occurring O(30%) of the time, depending on $M_{\mu\mu}$, $Y_{\mu\mu}$
 - Detailed nuclear fragmentation not available
- In time pileup
 - $\mu = (\text{interactions / bunch crossing}) = \sigma_{\text{in}} L / N_{\text{bunches}} f_{LHC}$
 - σ_{in} known to be ~7.7b (nuclear geometry), μ ~ 0.005
 - However, for ZDCs, one needs to use σ_{EMD}
 - σ_{EMD} ~ 190 b (ALICE, 2.76 TeV), 205 b (RELDIS, 5.02 TeV)
 - Thus, pileup is increased by 200/7.7 \sim 26, μ \sim 0.13

Observed ZDC topology is not sufficient for final results if desired precision is <15%

YY processes: light-by-light

AS

Run: 287931 Event: 461251458 2015-12-13 09:51:07 CEST

vv processes: light-by-light

Invariant masses out to 20-25 GeV, Pair rapidity out to 2

ARTICLES PUBLISHED ONLINE: 14 AUGUST 2017 | DOI: 10.1038/NPHYS4208 OPEN

Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC

ATLAS Collaboration[†]

12

10

8

 0^{L}

Events / 3 GeV

Clear enhancement at low acoplanarity

 $\sigma_{fid} = 70\pm24$ (stat.) ±17 (syst) nb

4.4**σ** significance observed 3.8**σ** expected

Looking forward to improvements in 2018!

ATLAS ZDC in light-by-light

Light-by-light is pure **YY** → no neutron production (modulo soft exchange) background processes involving gluon exchange → neutrons in ZDC Events with ZDC activity show broad acoplanarity distribution validates use of expectations from SuperChic CEP **YY** processes: dileptons

Run: 287038 Event: 71765109 2015-11-30 23:20:10 CEST

Dimuons UPC Pb+Pb 5.02 TeV

YY processes: dileptons

ATLAS-CONF-2016-025

Trigger on muon + E_T < 50 GeV + 2 forward gaps

Select on 2 opposite charge muons and no other tracks in $|\eta|$ < 2.5

After all corrections: good agreement of µµ cross sections with STARLIGHT 1.1

ATLAS

ZDC for dilepton production

Pure **YY**, but with better statistics than light-by-light: clean environment to study impact of soft photon exchange

Also can study backgrounds: Data shows clear, irreducible Aco tails, while simulated STARLIGHT provides only back-to-back dilepton production

Could expect contributions from NLO QED diagrams as well as dissociative processes

Similar to CEP, dissociative processes involve hard exchange and should lead to nuclear breakup

Work in progress, coming soon.

Photonuclear dijets

>0n

Run: 286717 Event: 36935568 2015-11-26 09:36:37 CEST Pb+Pb, √s_{NN} = 5.02 TeV

=0n

exclusive I-arm ZDC used to trigger on these events

 $p_{\rm T}^2 = 60 {
m GeV}$

 $p_{\rm T}^{1} = 73 {\rm ~GeV}$

Two or more jets (anti- k_T R=0.4) with $p_T > 15$ GeV, $|\mathbf{\eta}| < 4.4$ At least one with $p_T > 20$ GeV, $|\Delta \mathbf{\varphi}|_{12} > 0.2$, $m_{\text{jets}} > 35$ GeV

Photonuclear dijets

jet variables: $H_T \equiv \sum p_{T_i}, x_A \equiv -$

 $\frac{m_{\text{jets}}}{-}e^{-y_{\text{jets}}}$

gap selection to reject **YY** while accepting resolved photon production.

Need to also include diffractive contributions w/o ZDC trigger

A. Angerami, QM18

Photonuclear dijets

uction gap selection to reject **YY** while accepting resolved photon production.

Need to also include diffractive contributions w/o ZDC trigger

Some overlap with EIC: access to eA physics

jet variables: $H_{\rm T} \equiv \sum_{i} p_{{\rm T}i}, x_{\rm A} \equiv \frac{m_{\rm jets}}{\sqrt{s}} e^{-y_{\rm jets}}$

Conclusions

- ZDC plays a central role in ATLAS HI program
 - Distinguishes between hadronic and EM induced reactions
 - Central role in minbias & UPC trigger schemes
- Use cases of ATLAS ZDC discussed for
 - Event selection/centrality confirmation
 - Characterizing backgrounds in light-by-light
 - Studying soft photon exchange and backgrounds in UPC dilepton production
 - Selection of photonuclear dijet events
- Upgrade design underway for Runs 3/4:
 - joint R&D efforts between ATLAS & CMS
 - Discussed in detail in next talk