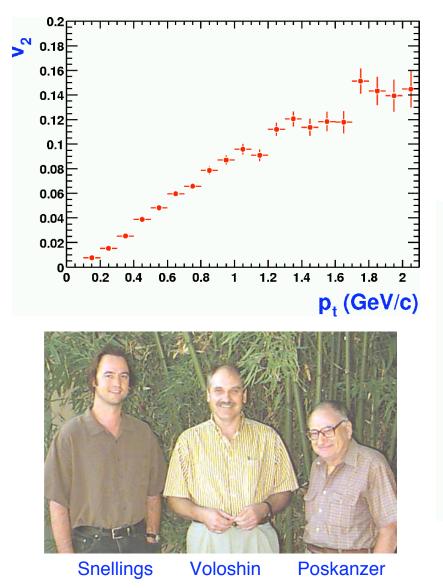
Flow Analysis Methods

Exploring the secrets of the universe

Art Poskanzer

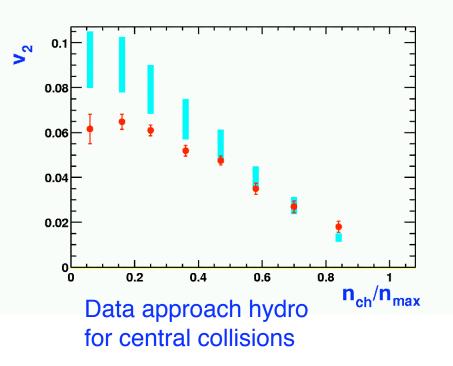
Color by Roberta Weir

First RHIC Elliptic Flow

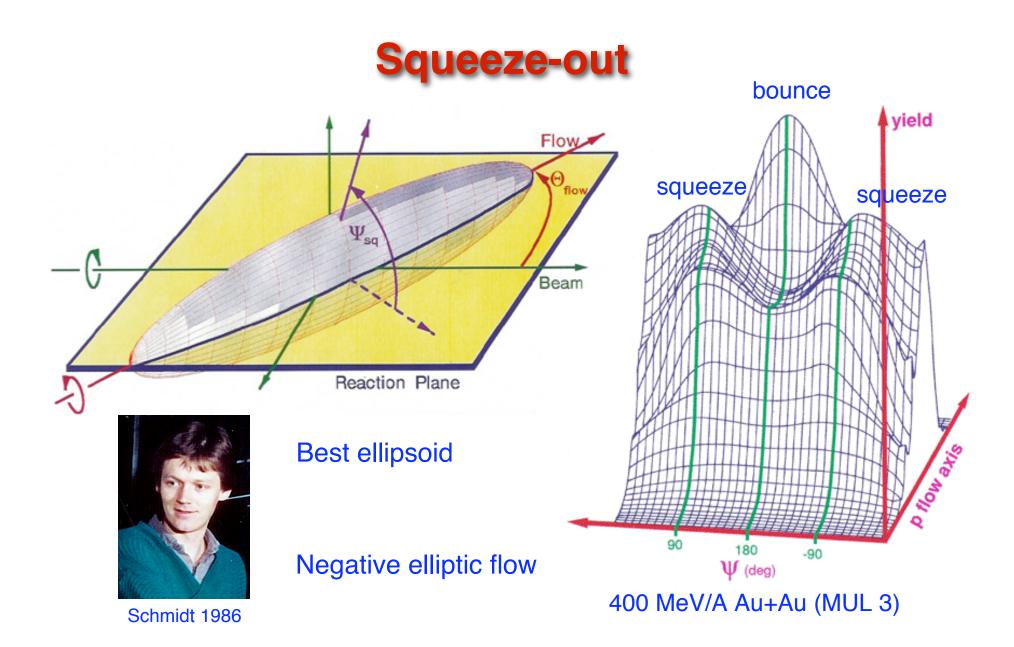


First paper from STAR 22 k events

valley / peak = $1 - 4 v_2$



STAR, K.H. Ackermann et al., PRL 86, 402 (2001)



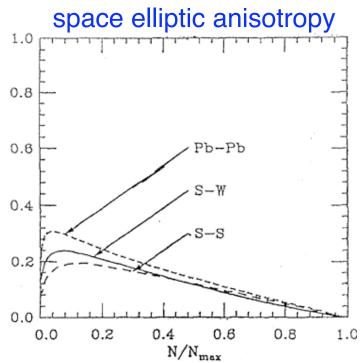
Plastic Ball, H.H. Gutbrod et al., PRC **42**, 640 (1991) Diogene, M. Demoulins et al., Phys. Lett. **B241**, 476 (1990) Plastic Ball, H.H. Gutbrod et al., Phys. Lett. **B216**, 267 (1989)

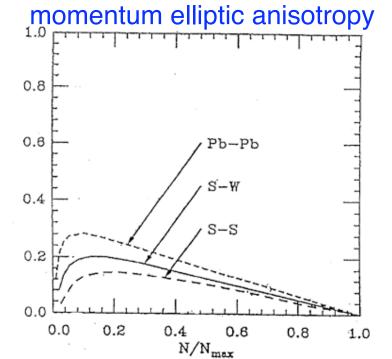
Prediction of Positive Elliptic Flow

At a meeting in Jan '93, Jean-Yves told me he was predicting in-plane elliptic flow at high beam energies. I responded that we had just discovered out-of-plane elliptic flow Altabe

Ollitrault

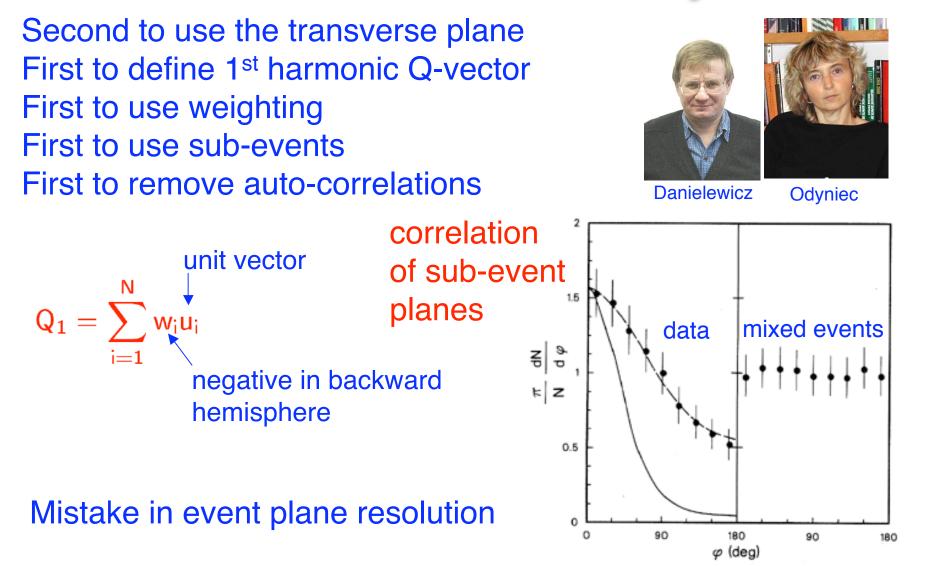
2-dimensional transverse sphericity analysis: best ellipse





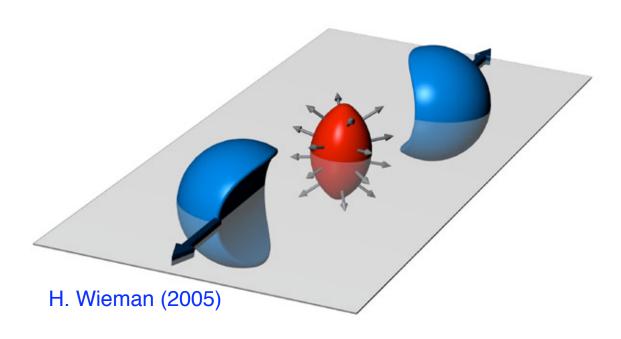
First Observation: E877, J. Barrette et al., PRC **55**, 1420 (1997) J.-Y. Ollitrault, PRD **46**, 229 (1992), PRD **48**, 1132 (1993)

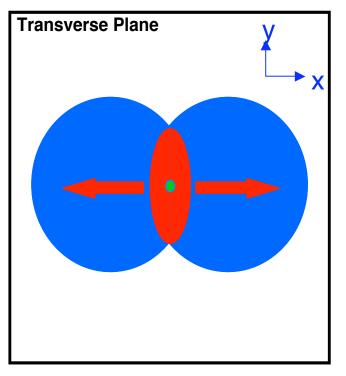
Transverse Momentum Analysis



Transverse Plane

Anisotropic Flow as a function of rapidity





around the beam axis

 $\epsilon = \frac{\langle y^2 \rangle - \langle x^2 \rangle}{\langle y^2 \rangle + \langle x^2 \rangle} \quad S = \pi \sqrt{\langle x^2 \rangle \langle y^2 \rangle}$

self quenching expansion probe of early time

H. Sorge, PRL 78, 2309 (1997)

Fourier Harmonics

First to use Fourier harmonics:

- $1 + 2\mathsf{v}_1\cos(\phi \Psi_{\mathsf{RP}}) + 2\mathsf{v}_2\cos[2(\phi \Psi_{\mathsf{RP}})] + \cdots$
- $v_n = \langle \cos[n(\phi_i \Psi_{\mathsf{RP}})] \rangle$

Voloshin

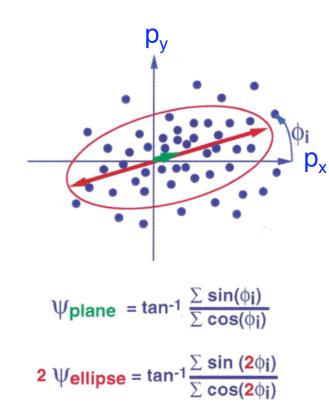
- Event plane resolution correction made for each harmonic Unfiltered theory can be compared to experiment! Tremendous stimulus to theoreticians
- First to use mixed harmonics

First to use the terms directed and elliptic flow for v_1 and v_2

S. Voloshin and Y. Zhang, hep-ph/940782; Z. Phys. C **70**, 665 (1996) See also, J.-Y. Ollitrault, arXiv nucl-ex/9711003 (1997) and J.-Y. Ollitrault, Nucl. Phys. **A590**, 561c (1995)

Flow Vector

Sum of vectors of all the particles



For each harmonic n:

 $\begin{aligned} Q_{n}\cos(n\Psi_{n}) &= \sum [w_{i}\cos(n\phi_{i})] \\ Q_{n}\sin(n\Psi_{n}) &= \sum [w_{i}\sin(n\phi_{i})] \end{aligned}$

Q is a 2 vector

w_i negative in backward hemisphere for odd harmonics

or n=1:

$$Q_1 = \sum_{i=1}^{N} w_i u_i$$

Yingchao Zhang

Standard Event Plane Method I

- Define 2 independent groups of particles
 - random subs most affected by non-flow
 - charge subs like-sign less sensitive to neutral resonance decays
 - η subs
 suppresses short-range correlations
 FTPC even better
- Flatten event plane azimuthal distributions in lab
 - Both sub-events and full event Q-vectors

Flattening Methods I

To remove "Acceptance Correlations" flatten the azimuthal distribution of the event plane

 phi weighting - in constructing the Q-vector one weights with the inverse of the azimuthal distribution of the particles averaged over many events

$$\mathbf{w}_{i} = \frac{1}{\langle \mathsf{N}(\phi_{i}) \rangle}$$

 recentering - from each event Q-vector one subtracts the Q-vector averaged over many events

$$\mathbf{X} \mathrel{-}= \langle X \rangle \; ; \; \mathbf{Y} \mathrel{-}= \langle Y \rangle$$

 shifting - one fits the non-flat azimuthal distribution of the Q-vector angles with a Fourier expansion and calculates the shifts necessary to force a flat distribution

$$n\Delta\Psi_n = \sum_{i=1}^{I_{max}} \frac{2}{i} (-\langle \sin(in\Psi_n)\rangle \cos(in\Psi_n) + \langle \cos(in\Psi_n)\rangle \sin(in\Psi_n))$$

A.M. Poskanzer and S.A. Voloshin, PRC 58, 1671 (1998)

Flattening Methods II

Mixed events is not recommended because it has no advantage over phi weights from the same event

Shifting is good as a second method when either phi weights or recentering does not produce a flat distribution (e.g. FTPC)

For elliptic flow, only the **second** harmonic component of the flattened distribution needs to be small !

Standard Event Plane Method II

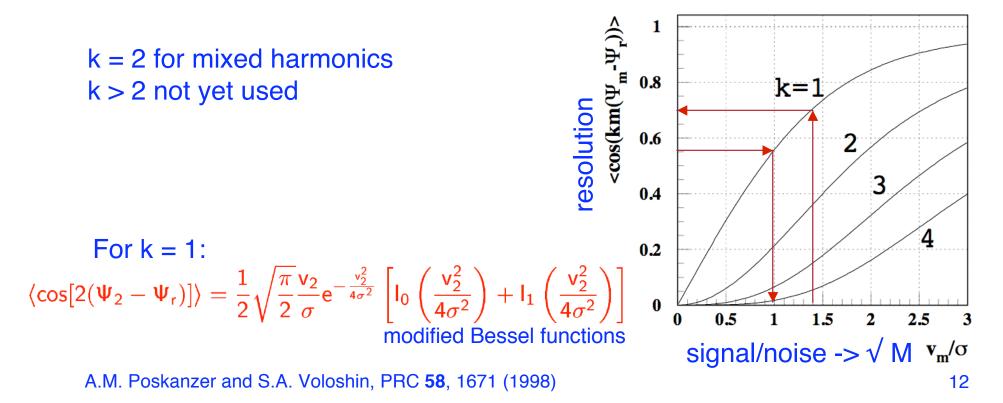
- Correlate subevent planes
- Calculate subevent plane resolution

 $\mathsf{resSub} \equiv \langle \cos(n(\Psi_n^a - \Psi_{\mathsf{RP}})) \rangle = \sqrt{\langle \cos(n(\Psi_n^a - \Psi_n^b)) \rangle}$

Calculate event plane resolution

 $\mathsf{res} \equiv \langle \cos(\mathsf{n}(\Psi_\mathsf{n} - \Psi_\mathsf{RP})) \rangle \leq \sqrt{2} \, \mathsf{resSub}$

 $\langle \cos[n(\Psi_n^a - \Psi_n^b)] \rangle$



Standard Event Plane Method III

- Correlate particles with the event plane
 - But the event plane not containing the particle
 - (no autocorrelations)

$$v_{n}^{obs}(\eta, p_{t}) = \langle \cos[n(\phi - \Psi_{n})] \rangle$$

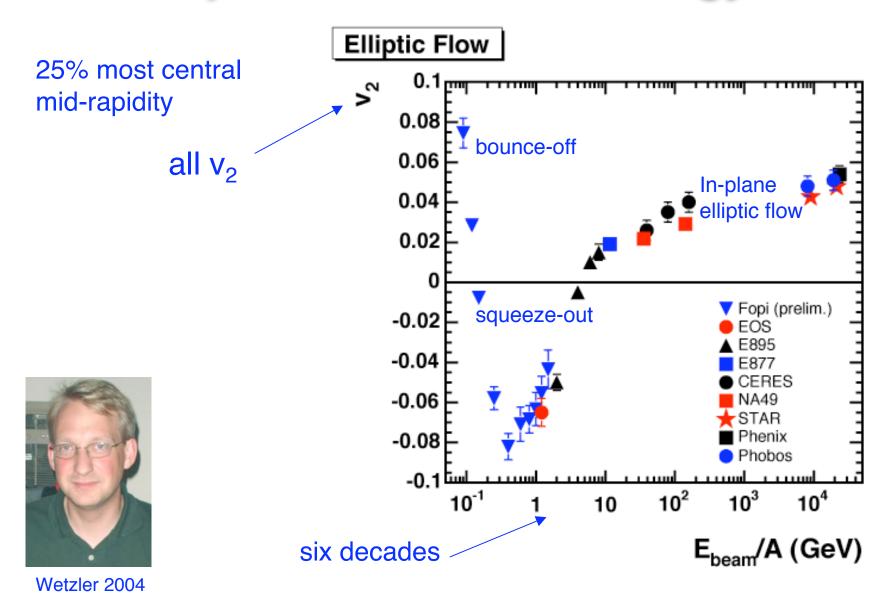
Correct for the event plane resolution

 $v_n(\eta,p_t) = v_n^{obs}/res$

- Average over p_t , η , or both (with yield weighting)
 - $v_2(\eta)$ may need p_t extrapolation
 - v₂(p_t) for specified η range
 - v₂ vs. centrality called integrated v₂

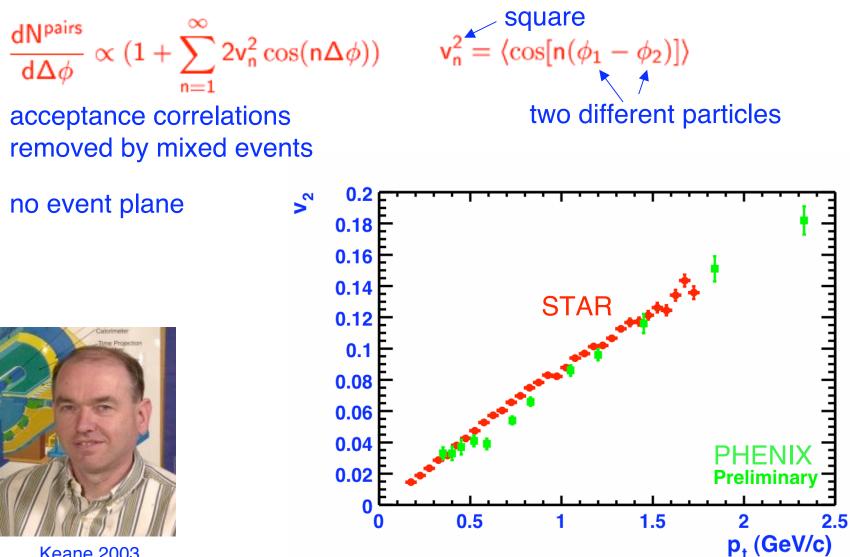
StFlowAnalysisMaker in STAR cvs library

Elliptic Flow vs. Beam Energy



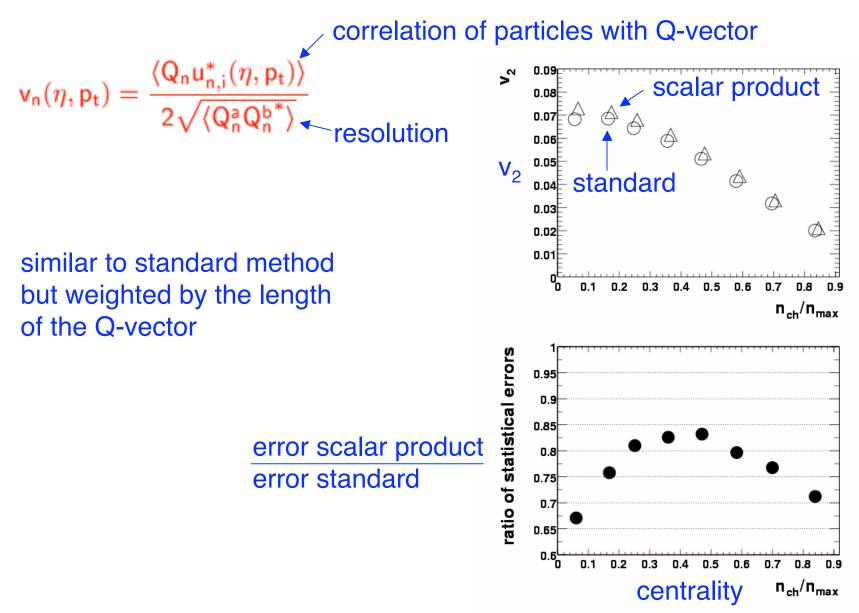
A. Wetzler (2005)

Pair-wise Correlations



Keane 2003

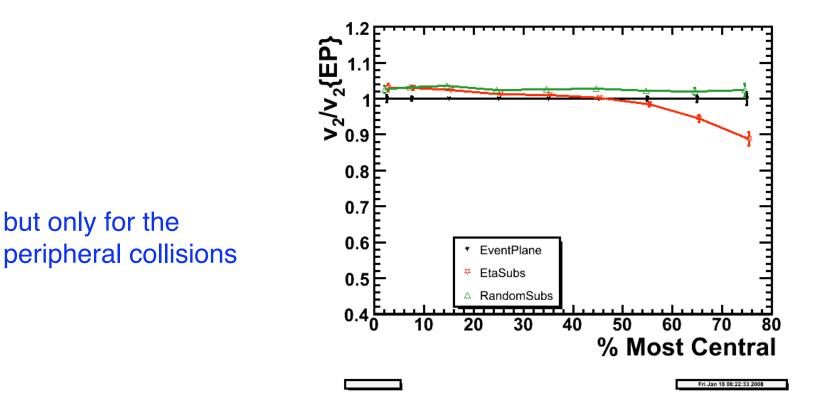
Streamer Chamber, S. Wang et al., PRC 44, 1091 (1991) PHENIX, K. Adcox et al., PRL 89, 21301 (2002)



STAR, C. Adler et al., PRC **66**, 034904 (2002)

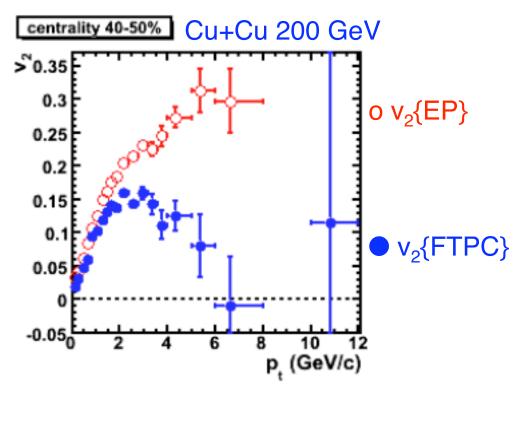
 $\eta\mbox{-subs}$ similar to standard method but the event plane is from the opposite hemisphere

Large η gap reduces non-flow due to short-range correlations

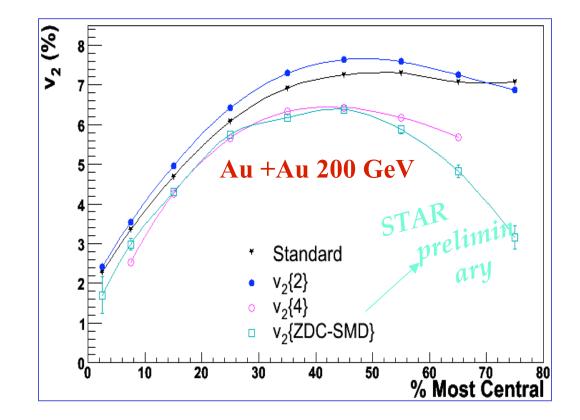


FTPC similar to standard method but the event plane is from the FTPCs

Larger η gap reduces non-flow due to short-range correlations



Still larger η gap reduces non-flow due to short-range correlations



 v_2 {ZDC-SMD} similar to v_2 {4}

G. Wang, Quark Matter (2005)

Cumulants I

Four-particle correlation subtracts 2-particle nonflow

$$\begin{split} \left< u_{n,1}u_{n,2}u_{n,3}^{*}u_{n,4}^{*} \right> &= v_{n}^{4} + 4v_{n}^{2}\sigma_{dyn}^{2} + 2\sigma_{dyn}^{4} \\ \left< u_{n,1}u_{n,2}^{*} \right> &= v_{n}^{2} + \sigma_{dyn}^{2} = v_{2}\{2\}^{2} & \text{fourth power} \\ C\{4\} &\equiv \left< u_{n,1}u_{n,2}u_{n,3}^{*}u_{n,4}^{*} \right> - 2\left< u_{n,1}u_{n,2}^{*} \right>^{2} = -v_{n}\{4\}^{4} \\ \sigma_{dyn}^{2} &= v_{2}\{2\}^{2} - v_{2}\{4\}^{2} & \text{is non-flow} & \sigma_{dyn}^{2} = \delta_{2} + 2\sigma_{v2}^{2} \end{split}$$

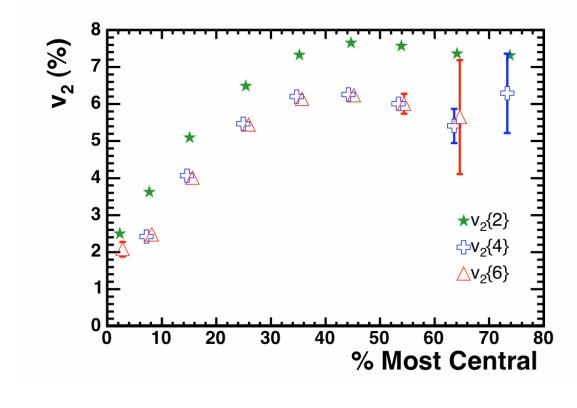
Generating function:

$$\begin{split} & \mathsf{G}_{\mathsf{n}}(z) = \prod_{j=1}^{\mathsf{M}} \left(1 + \frac{z^* \mathsf{u}_{\mathsf{n},j} + z \mathsf{u}_{\mathsf{n},j}^*}{\mathsf{M}} \right) \\ & \mathsf{M} \cdot \left(\langle \mathsf{G}_{\mathsf{n}}(z) \rangle^{1/\mathsf{M}} - 1 \right) = \sum_{\mathsf{k}} \frac{|z|^{2\mathsf{k}}}{(\mathsf{k}!)^2} \mathsf{C}\{2\mathsf{k}\} \end{split} \qquad \begin{array}{l} \mathsf{C}\{4\} \text{ term of fit} \end{split}$$

Can be calculated directly from $\langle Q_n Q_n^* \rangle, \langle Q_n^2 Q_n^{*2} \rangle, \langle Q_{2n} Q_{2n}^* \rangle, \langle Q_n^2 Q_{2n}^* \rangle$ Voloshin (2002)

N. Borghini, P.M. Dinh, and J.-Y. Ollitrault, PRC **64**, 054901 (2001) STAR, C. Adler et al., PRC **66**, 034904 (2002)

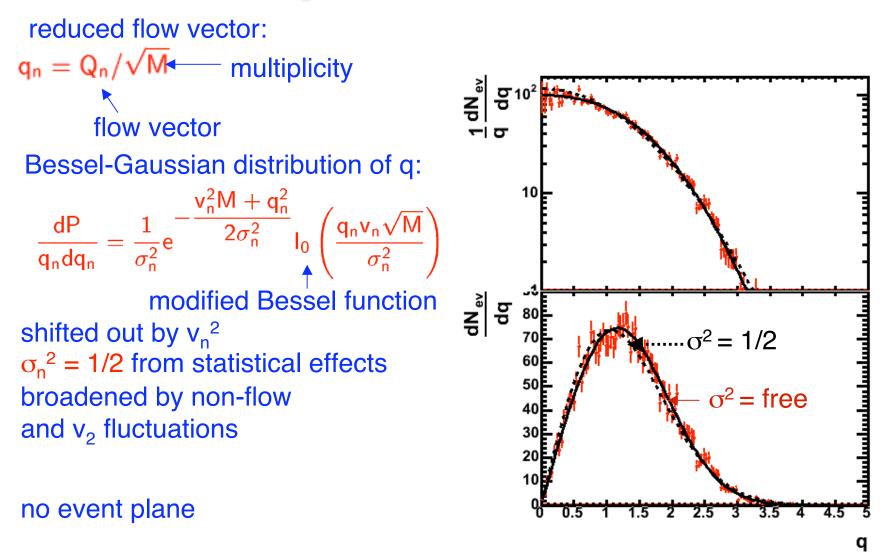
Cumulants II



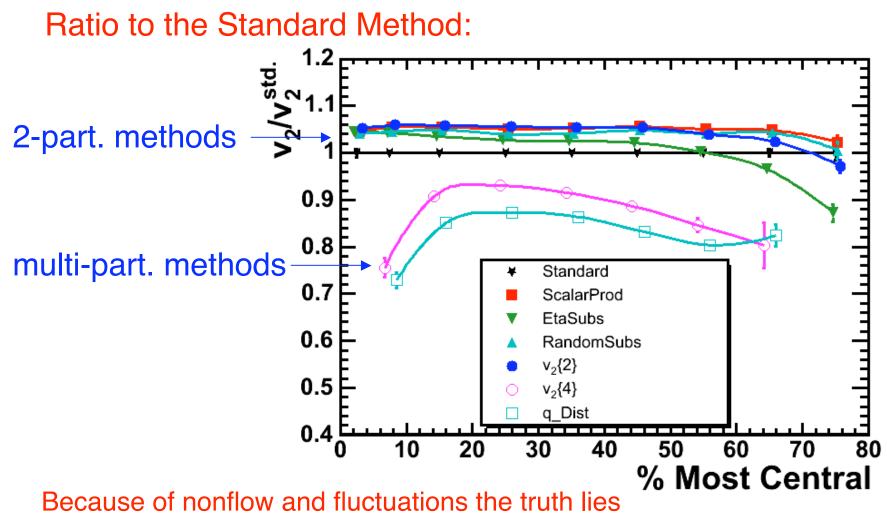
 v_2 {6} no better than v_2 {4}

Tang STAR, J. Adams et al., PRC **72**, 014904 (2005)

q-dist Method I



Methods Comparison (2005)



between the lower band and the mean of the two bands

STAR, J. Adams et al., PRC 72, 014904 (2005)

Lee-Yang Zeros Method I

All-particle correlation subtracts nonflow to all orders Sum Generating Function:

Flow vector projection on arbitrary lab angle, θ

$$\mathbf{Q}_{\mathbf{n}}^{\theta} = \sum_{j=1}^{N} w_j \cos(n(\phi_j - \theta))$$

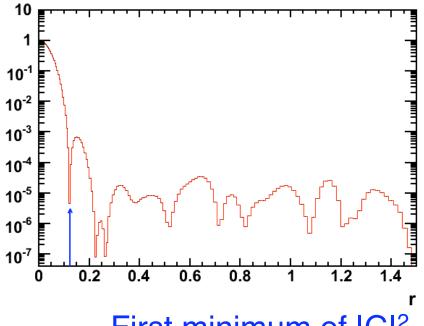
⊕|G^θ(ir)|² **Generating function for one**

$$\mathbf{G}_{\mathbf{n}}^{\theta}(\mathbf{r}) = \mid \langle e^{irQ_{n}^{\theta}} \rangle \mid$$

Average over θ to remove acceptance effects

$$v_2 = \frac{2.4}{M \ \left< r_0^{\theta} \right>}$$

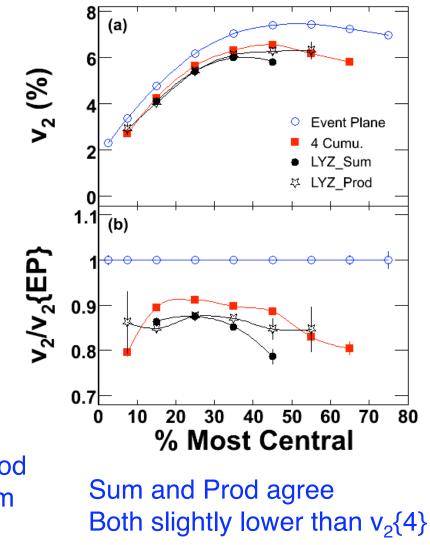
Product Generating Function:



- First minimum of IGI² determines r_0^{θ}
- Better for mixed harmonics but slower

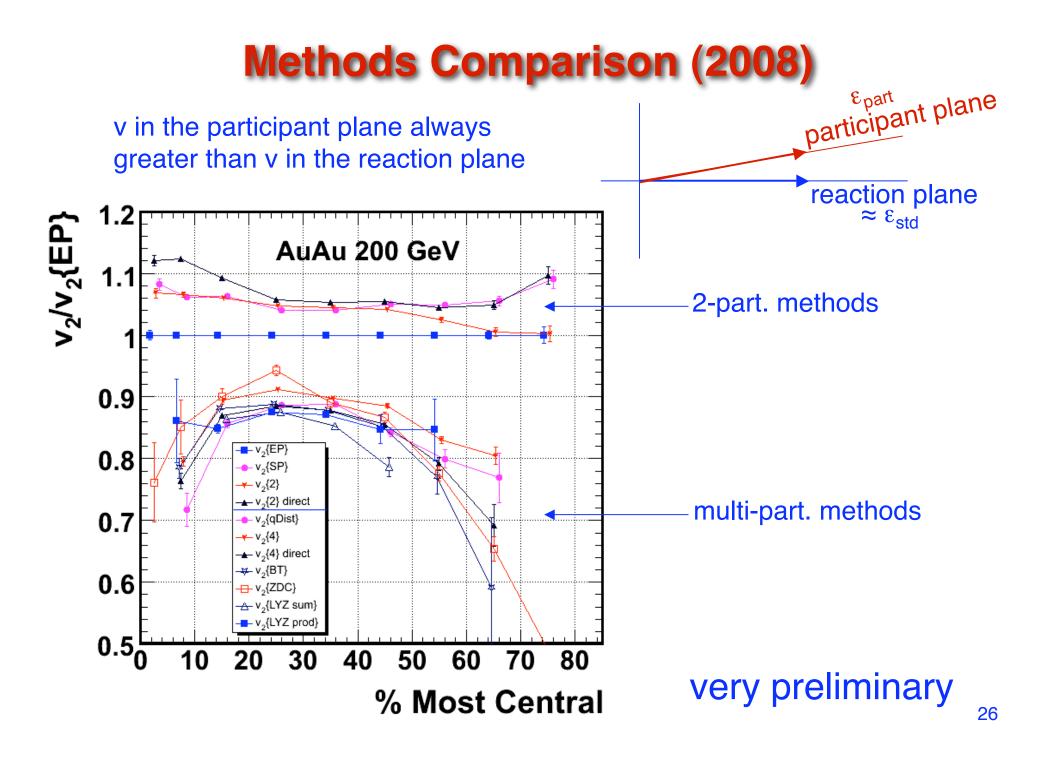
R.S. Bhalerao, N. Borghini, and J.-Y. Ollitrault, Nucl. Phys. A 727, 373 (2003) STAR, B.I. Abelev et al, PRC, to be submitted (2008)

Lee-Yang Zeros Method II



Sergei's Bessel Transform method is a simplified version of LYZ sum

STAR, B.I. Abelev et al., PRC, to be submitted (2008)



q-Dist with Nonflow and Fluctuations I

$$\begin{split} \frac{d^2 N}{q_n dq_n d(\Delta \phi)} &= \frac{1}{2\pi \sigma_x \sigma_y} e^{\left[-\frac{(q_n \cos(n\Delta \phi) - \sqrt{M}v_n)^2}{2\sigma_x^2} - \frac{q_n^2 \sin^2(n\Delta \phi)}{2\sigma_y^2}\right]} \\ \sigma_{n,x}^2 &= \frac{1}{2} [1 + v_{2n} - 2v_n^2 + (M - 1)(\delta_n + 2\sigma_{v_n}^2)] & \text{QM06 left out M} \\ \sigma_{n,y}^2 &= \frac{1}{2} [1 - v_{2n} + (M - 1)(\delta_n + 2\sigma_{v_n}^2)] & \text{in front of } \delta \\ \sigma_{dyn}^2 &= \delta_2 + 2\sigma_{v_2}^2 & \text{fluctuations broaden} \\ \text{non-flow fluctuations} & \text{there are effectively fewer} \\ \text{independent particles} \\ \sigma_q^2 &= \frac{1}{2} (1 + M \sigma_{dyn}^2) & \text{because } \sigma_x \text{ close to } \sigma_y \\ \text{integrate over } \phi \text{ by expansion } 2 \text{ ways: (for n = 2)} \\ \frac{dN}{dq_2} &= \frac{q_2}{\sigma_q^2} e^{-\frac{q_2^2 + Mv_2^2}{2\sigma_q^2}} I_0 \left(\frac{q_2 v_2 \sqrt{M}}{\sigma_q^2}\right) + \cdots & \text{leading term the same} \\ \text{higher terms different} \\ \text{they involve the difference between } \sigma_x \text{ and } \sigma_y \end{split}$$

q-Dist with Nonflow and Fluctuations II

Paul sets $\sigma_{v2} = 0$ for the integration and then smears with σ_{v2}

$$\begin{split} \frac{d\mathsf{N}}{\mathsf{q}_{2}\mathsf{d}\mathsf{q}_{2}}(\langle\mathsf{v}_{2}\rangle,\sigma_{\mathsf{v}2}) &= \int d\mathsf{v}_{2} \;\mathsf{f}(\mathsf{v}_{2}-\langle\mathsf{v}_{2}\rangle,\sigma_{\mathsf{v}2}) \frac{d\mathsf{N}}{\mathsf{q}_{2}\mathsf{d}\mathsf{q}_{2}} \\ \mathsf{f} &= \frac{1}{\sqrt{2\pi\sigma_{\mathsf{v}2}^{2}}} e^{-\frac{(\mathsf{v}_{2}-\langle\mathsf{v}_{2}\rangle)^{2}}{2\sigma_{\mathsf{v}2}^{2}}} & \text{Gaussian along PP, but not restricted} \end{split}$$

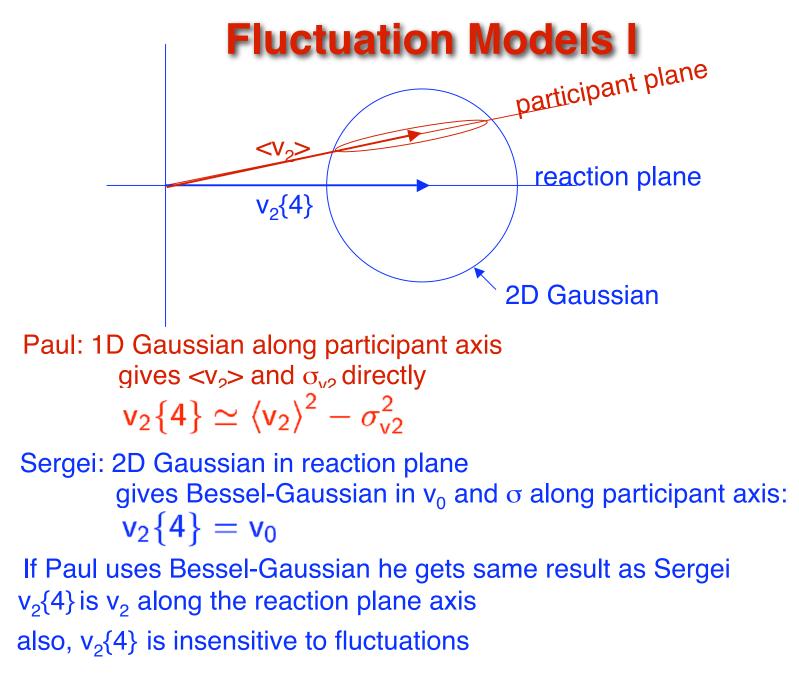
Sergei sets $\sigma_{v2x} = \sigma_{v2y}$ before integration, assuming a 2D Gaussian for the fluctuations

Both depend only on $\sigma_{dyn}^2 = \delta_2 + 2\sigma_{v2}^2$

and thus can not separate δ_2 from σ_{v2}

A upper limit on δ_2 gives lower limit on σ_{v2} or, arrange to have δ_2 small, as PHOBOS does with an η -gap

No more info from Cumulants since $\sigma_{dyn}^2 = v_2 \{2\}^2 - v_2 \{4\}^2$



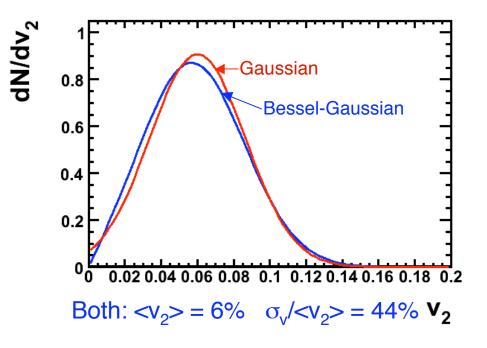
Fluctuation Models II

Paul's 1D Gaussian along PP

$$f = \frac{1}{\sqrt{2\pi\sigma_{v2}^2}} e^{-\frac{(v_2 - \langle v_2 \rangle)^2}{2\sigma_{v2}^2}}$$

Sergei's 2D Gaussian in RP

$$\frac{\mathrm{dN}}{\mathrm{dv}_2} = \frac{\mathrm{v}_2}{\sigma^2} \mathrm{e}^{-\frac{\mathrm{v}_2^2 + \mathrm{v}_0^2}{2\sigma^2}} \mathrm{I}_0\left(\frac{\mathrm{v}_2 \, \mathrm{v}_0}{\sigma^2}\right)$$

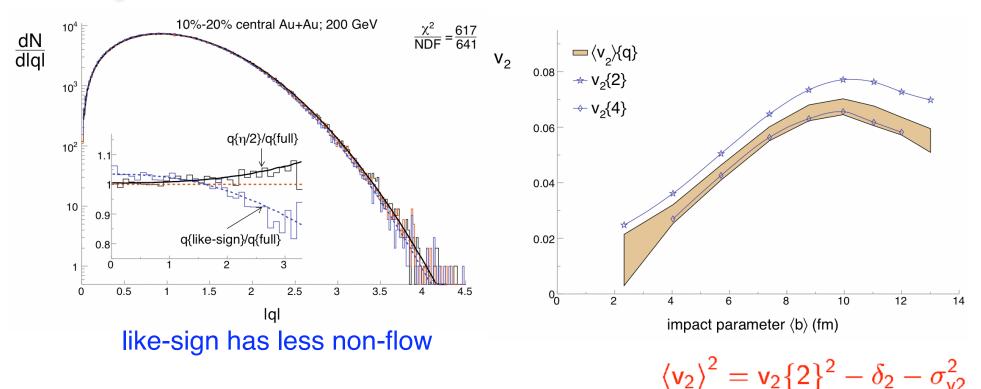


But Sergei must calculate $\langle v_2 \rangle$ and σ_{v_2} along the participant axis:

$$\begin{aligned} \langle \mathbf{v} \rangle &= \frac{1}{2\sigma} \mathbf{e}^{-\frac{\mathbf{v}_0^2}{4\sigma^2}} \sqrt{\frac{\pi}{2}} \left[(2\sigma^2 + \mathbf{v}_0^2) \mathbf{I}_0 \left(\frac{\mathbf{v}_0^2}{4\sigma^2} \right) + \mathbf{v}_0^2 \mathbf{I}_1 \left(\frac{\mathbf{v}_0^2}{4\sigma^2} \right) \right] \\ \langle \mathbf{v}^2 \rangle &= \mathbf{v}_0^2 + 2\sigma^2 \\ \sigma_{\mathbf{v}}^2 &= \langle \mathbf{v}^2 \rangle - \langle \mathbf{v} \rangle^2 = \mathbf{v}_0^2 + 2\sigma^2 - \langle \mathbf{v} \rangle^2 \end{aligned}$$

S.A. Voloshin, A.M. Poskanzer, A. Tang, G. Wang, Phys. Lett. B, 659, 537 (2008)

q-Dist with Nonflow and Fluctuations III



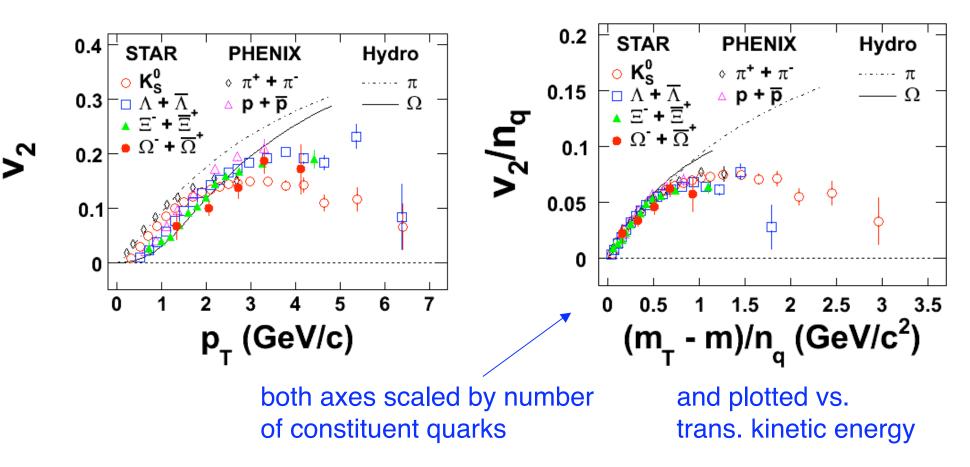
STAR, P. Sorensen, QM08

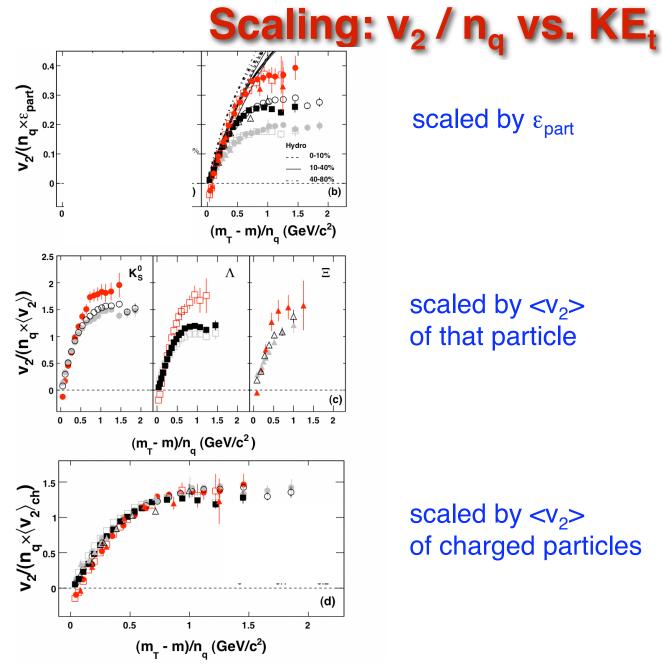
See Paul's talk

STAR preliminary 31

 $\langle \mathbf{v}_2 \rangle^2 \simeq \mathbf{v}_2 \{4\}^2 + \sigma_{\mathbf{v}^2}^2$

Particle Identification

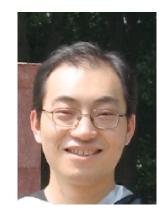




scaled by ϵ_{part}

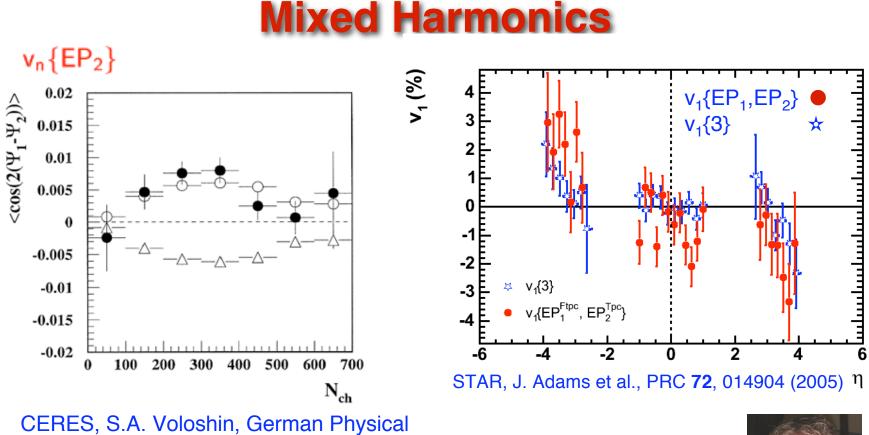
scaled by $\langle v_2 \rangle$ of that particle

scaled by $\langle v_2 \rangle$ of charged particles



Yan Lu

STAR, B.I. Abelev et al, PRC, to be submitted (2008)); Yan Lu thesis (2007)



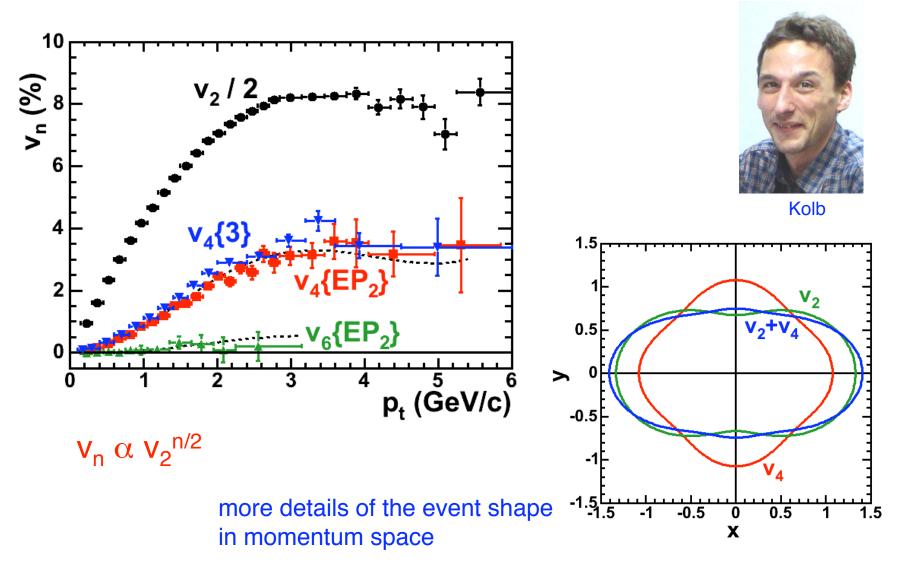
Society meeting (1998) was the first

Removes nonflow Uses best determined 2nd har. event plane

Oldenburg 2005

N. Borghini, P.M. Dinh, and J.-Y. Ollitrault, PRC, 66, 014905 (2002)

Higher Harmonics



Conclusions

- 25 years of flow analysis development
 - Extract parameters independent of acceptance
- Standard Method is the most efficient of statistics
- Starting with RHIC Run IV, systematics are more important than statistics
 - Separation in η of particles and plane
 - Multi-particle methods
 - Mixed harmonics
 - Separate nonflow and fluctuations