Single hadron	The CGC	Hadron-hadron	

Initial state physics: An introduction to the Color Glass Condensate

Renaud Boussarie

Brookhaven National Laboratory

Hard Probe 2020 Student lectures

Single hadron	The CGC	Hadron-hadron	
000000000000000	000000	0000000	
Overview			

Probing a single hadron

2 The Color Glass Condensate

3 Hadron-hadron collisions within the CGC framework

Accessing the partonic content of hadrons with an electromagnetic probe

 $\ln Q^2$

QCD at moderate $x_B = Q^2/s$

 $Q^2 \sim s$

QCD factorization processes with a hard scale $Q \gg \Lambda_{QCD}$

 $\sigma = \mathcal{F}(\mathbf{x}, \mu) \otimes \mathcal{H}(\mathbf{x}, \mu)$

At a scale μ , the process is factorized into:

- A hard scattering subamplitude $\mathcal{H}(x,\mu)$
- A Parton Distribution Function (PDF) $\mathcal{F}(x,\mu)$

 μ independence: DGLAP renormalization equation for ${\cal F}$

Parton Distribution Fu	Inctions		
00000000000000			
Single hadron	The CGC	Hadron-hadron	Summary

Gluon exchanges dominate at small x

[NNLO NNPDF3.0 global analysis, taken from PDG2018]

QCD at small $x_B = Q^2/s$

 $Q^2 \ll s$

 $\ln Q^2$

Single hadron	The CGC	Hadron-hadron	
000000000000000	0000000	0000000	0
The Pomeron			

Regge theory: for asymptotic values of s, an effective particle with the quantum numbers of the vacuum is exchanged

Positive C-parity: Pomeron exchange, negative C-parity: Odderon exchange

- How can we understand the Pomeron and the Odderon in perturbative QCD?
- How does it couple to hadrons?

Naive perturbative description of the target hadron

Two gluons on a color singlet	state
$\operatorname{tr}(t^{a}t^{a})$	
Leading Pomeron	

Three gluons on a color singlet state $tr(t^{a}t^{b}t^{c}) = \frac{1}{4}(d^{abc} + if^{abc})$ $f^{abc}: \text{ subleading Pomeron}$ $d^{abc}: \text{ leading Odderon}$

More involved but still for perturbative targets: BFKL, BKP, BLV... Most general framework: small-x semiclassical effective theory

Single hadron	The CGC	Hadron-hadron	
00000000000000	000000	0000000	0

Effective semiclassical description of small x QCD

Let us split the gluonic field between "fast" and "slow" gluons

$$\begin{aligned} \mathcal{A}^{\mu a}(k^+,k^-,\vec{k}) &= A^{\mu a}_{Y_c}(|k^+| > e^{-Y_c}p^+,k^-,\vec{k}) \\ &+ b^{\mu a}_{Y_c}(|k^+| < e^{-Y_c}p^+,k^-,\vec{k}) \end{aligned}$$

 $e^{-Y_c} \ll 1$

Single hadron	The CGC 0000000	Hadron-hadron 0000000	Summary O
Large longitudinal bo	ost to the projec	tile frame	
),,,,,,,
~ <i>P</i> ⁻ <i>n</i> ₂		~p*n:	→
. + . +		$1_{1+1} + x^{-}$	

- $b^k(x^+,x^-,\vec{x})$ $\Lambda \sim \sqrt{\frac{s}{m_t^2}}$ $b^k(\Lambda x^+,\frac{x^-}{\Lambda},\vec{x})$
 - $b^{\mu}(x) \rightarrow b^{-}(x) n_{2}^{\mu} = \delta(x^{+}) \mathbf{B}(\vec{x}) n_{2}^{\mu} + O(\sqrt{\frac{m_{t}^{2}}{s}})$ Shockwave approximation

Single hadron	The CGC 0000000	Hadron-hadron 00000000	Summary O
Factorized pictur	e		
,			
		<i>P'</i> >	
	Factorized am	olitude	
$\mathcal{A}^{Y_c} =$ Written similar	$\int d^{D-2} \vec{z_1} d^{D-2} \vec{z_2} \Phi^{Y_c}(\vec{z_1}, \vec{z_2})$ Dipole operator $\mathcal{U}_{ij}^{Y_c} = \frac{1}{N_c}$ ly for any number of Wilson	$egin{aligned} &\langle P' [\mathrm{Tr}(U^{Y_c}_{ec{z}_1}U^{Y_c\dagger}_{ec{z}_2}) - \Lambda] \ & \mathrm{Tr}(U^{Y_c}_{ec{z}_j}U^{Y_c\dagger}_{ec{z}_j}) - 1] \ & \mathrm{lines\ in\ any\ color\ represent} \end{aligned}$	$ c P\rangle$

 Y_c independence: B-JIMWLK hierarchy of equations [Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner]

Introduction to CGC theory

Single hadron	The CGC	Hadron-hadron	
000000000000000	000000	0000000	

Evolution for the dipole operator

B-JIMWLK hierarchy of equations [Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner]

$$\frac{\partial \mathcal{U}_{12}^{Y_c}}{\partial Y_c} = \frac{\alpha_s N_c}{2\pi^2} \int d\vec{z}_3 \frac{\vec{z}_{12}^2}{\vec{z}_{13}^2 \vec{z}_{23}^2} \left[\mathcal{U}_{13}^{Y_c} + \mathcal{U}_{32}^{Y_c} - \mathcal{U}_{12}^{Y_c} + \mathcal{U}_{13}^{Y_c} \mathcal{U}_{32}^{Y_c} \right] \\ \frac{\partial \mathcal{U}_{13}^{Y_c} \mathcal{U}_{32}^{Y_c}}{\partial Y_c} = \dots$$

Evolves a dipole into a double dipole

Single hadron	The CGC	Hadron-hadron	
000000000000000000000000000000000000000	000000	0000000	
The BK equation			

Mean field approximation, or 't Hooft planar limit $N_c \rightarrow \infty$ in the dipole B-JIMWLK equation

⇒ BK equation [Balitsky, 1995] [Kovchegov, 1999]

$$\frac{\partial \left\langle \mathcal{U}_{12}^{Y_c} \right\rangle}{\partial Y_c} = \frac{\alpha_s N_c}{2\pi^2} \int d\vec{z}_3 \, \frac{\vec{z}_{12}^2}{\vec{z}_{13}^2 \vec{z}_{23}^2} \left[\left\langle \mathcal{U}_{13}^{Y_c} \right\rangle + \left\langle \mathcal{U}_{32}^{Y_c} \right\rangle - \left\langle \mathcal{U}_{12}^{Y_c} \right\rangle + \left\langle \mathcal{U}_{13}^{Y_c} \right\rangle \left\langle \mathcal{U}_{32}^{Y_c} \right\rangle \right]$$

BFKL/BKP part Triple pomeron vertex

Non-linear term : one type of saturation

Non-perturbative elements are compatible with CGC-type models

Saturation scale: a	guick estimate		
00000000000000000	000000	0000000	0
Single hadron	The CGC	Hadron-hadron	Summary

The saturation scale Q_s

Gluons per unit area $\rho \propto rac{x G_A(x,Q^2)}{\pi R_A^2}$

Recombination cross section $\sigma_{gg \rightarrow g} \propto \frac{\alpha_s}{Q^2}$

Saturation starts when $ho\sigma\simeq 1$, which means Q_s^2 solves

$$Q_s^2 \propto lpha_s rac{x \mathcal{G}_A(x, Q_s^2)}{\pi R_A^2}.$$

$$Q_s^2 \propto A^{1/3} x^{-0.3}$$

One-loop corrections with saturation effects: state of the art Evolution

- Dipole evolution [Balitsky, Chirilli]
- 3-point operator evolution [Balitsky, Gerasimov, Grabovsky]
- 4-point operator evolution [Grabovsky]
- Full JIMWLK Hamiltonian [Kovner, Lublinsky, Mulian, 2014]

Observables

- Fully inclusive Deep Inelastic Scattering [Balitsky, Chirilli], [Beuf], [Hänninen, Lappi, Paatelainen]
- (Semi-inclusive) Photon+dijet in for ep and eA [Roy, Venugopalan]
- Exclusive dijet in ep, eA, γp or γA [RB, Grabovsky, Szymanowski, Wallon]
- Exclusive light vector meson in *ep* and *eA* [RB, Ivanov, Grabovsky, Szymanowski, Wallon]

Summary: probing a single hadron

Overview			
000000000000000	0000000	0000000	
Single hadron	The CGC	Hadron-hadron	

Probing a single hadron

2 The Color Glass Condensate

3 Hadron-hadron collisions within the CGC framework

Single hadron	The CGC	Hadron-hadron	
00000000000000	•000000	0000000	0

fast partons \leftrightarrow valence partons

slow gluons \leftrightarrow wee gluons

Single hadron	The CGC	Hadron-hadron	
00000000000000	000000	0000000	

Hadron wave function = collection of static color sources

Color sources ρ are classical random variables, treated with a weight function $W_Y[\rho]$

Static source = static current of color charge

$$J^{\mu}_{a} = \delta^{\mu +} \rho_{a}(x)$$

Wee gluons: solutions to the classical Yang-Mills equation with the source

$$[D_{\nu}, F^{\mu\nu}] = \delta^{\mu+} \rho_{a}(x) T^{a}$$

Single hadron	The CGC	Hadron-hadron	
00000000000000	000000	0000000	

Target matrix elements \rightarrow averages over configurations of sources and dynamical fields A^{μ}

$$\frac{\langle P|\mathcal{O}|P\rangle}{\langle P|P\rangle} \to \langle \mathcal{O}\rangle = \int \mathcal{D}\rho \, \mathcal{D}A^{\mu} \, W[\rho] \, e^{i\mathcal{S}[\rho,A]} \, \mathcal{O}[\rho,A]$$

The MV model			
000000000000000	0000000	0000000	
Single hadron	The CGC	Hadron-hadron	

McLerran-Venugopalan model

- Sources \simeq valence quarks \Rightarrow number of sources $\sim N_c A$
- Transverse radius $R_A \sim A^{1/3} \Lambda_{
 m QCD}^{-1}$
- Transverse resolution of the probe $1/Q^2$
- Number of sources seens by the probe $\Delta N = \frac{\Lambda_{\rm QCD}^2}{O^2} \frac{N_c A^{1/3}}{\pi}$

If $Q^2 \ll \Lambda_{\rm QCD}^2 A^{1/3}$, a large number of sources is probed

Random distribution of sources, total color charge probed is 0:

$$\langle \mathcal{Q} \rangle = \int_{1/Q^2} d^2 \vec{x} \int dx^- \rho(x^-, \vec{x}) = 0$$

The MV model			
00000000000000	0000000	00000000	
Single hadron	The CGC	Hadron-hadron	

McLerran-Venugopalan model

- Assume that $\langle
 ho_a(x^-, \vec{x})
 angle = 0$
- Write that $\langle \rho_a(x^-, \vec{x}) \rho_b(y^-, \vec{y}) \rangle = g_s^2 \delta_{ab} \delta(x^- y^-) \delta(\vec{x} \vec{y}) \lambda(x^-)$
- Assume that higher-point functions vanish

Correlators are generated from a Gaussian weight function

$$\Phi[
ho]\propto\exp\left(-rac{1}{2}\int\!d^2ec xrac{
ho_a\,
ho_a}{\mu^2}
ight),\quad\mu\propto\int dx^-\lambda(x^-)$$

Target matrix elements:

$$\frac{\langle P|\mathcal{O}|P\rangle}{\langle P|P\rangle} \to \frac{\int \mathcal{D}\rho \,\Phi[\rho] \,\mathcal{O}}{\int \mathcal{D}\rho \,\Phi[\rho]}$$

The MV model			
000000000000000	000000	0000000	
Single hadron	The CGC	Hadron-hadron	

Beyond the McLerran-Venugopalan model

Possible extensions

- Add a transverse dependence $\langle \rho_a(x^-, \vec{x}) \rho_b(y^-, \vec{y}) \rangle = g_s^2 \delta_{ab} \delta(x^- - y^-) \delta(\vec{x} - \vec{y}) \lambda(x^-, \vec{x})$
- Include higher-point functions, or use non-Gaussian weight functions

$$\Phi[\rho] \propto \exp\left(-\frac{1}{2}\int d^2\vec{x} \left[\frac{\rho_a \rho_a}{\mu^2} - \frac{d^{abc} \rho_a \rho_b \rho_c}{\kappa}\right]\right)$$

[Jeon, Venugopalan]

 $\rho_a \rho_a$: Pomeron term, $d^{abc} \rho_a \rho_b \rho_c$: Odderon term

Single hadron	The CGC	Hadron-hadron	
000000000000000	0000000	0000000	
Overview			

Probing a single hadron

2 The Color Glass Condensate

3 Hadron-hadron collisions within the CGC framework

4 Summary

Single hadron	The CGC	Hadron-hadron	Summary
	0000000	••••••	O

Hadron-hadron collisions in the CGC

Collisions of two distributions of color sources

Expectation value of an operator

$$\left\langle \mathcal{O} \right\rangle = \int \mathcal{D}\rho_1 \, \mathcal{D}\rho_2 \, W_{Y_1}[\rho_1] \, W_{Y_2}[\rho_2] \, \mathcal{O}[\rho_1,\rho_2]$$

Source terms in both light cone directions $J_1^{\mu} = \delta^{\mu +} \rho_1$ and $J_2^{\nu} = \delta^{\nu -} \rho_2 ...$

(1) In the second se			
00000000000000	0000000	0000000	
Single hadron	The CGC	Hadron-hadron	

Hadron-hadron collisions in the CGC

Two different saturation scales

[1] L. Martin, R. Martin, and R. M. Martin, and R. Martin, and			
00000000000000	000000	0000000	
Single hadron	The CGC	Hadron-hadron	

Hadron-hadron collisions in the CGC

Hybrid factorization ansatz [Dumitru, Hayashigaki, Jalilian-Marian]

At forward rapidities, we can use the CGC to describe the target, while using colinear factorization to describe the projectile.

Allows to study the target with well-understood descriptions of the projectile.

Loop corrections with the h	vbrid factorization an	nsatz	
00000000000000	000000	0000000	
Single hadron	The CGC	Hadron-hadron	Summary

One-loop corrections with saturation effects: state of the art Evolution

- Dipole evolution [Balitsky, Chirilli]
- 3-point operator evolution [Balitsky, Gerasimov, Grabovsky]
- 4-point operator evolution [Grabovsky]
- Full JIMWLK Hamiltonian [Kovner, Lublinsky, Mulian, 2014]

Observable

• Semi-inclusive hadron production in hybrid factorization [Chirilli, Xiao, Yuan], [Altinoluk, Armesto, Beuf, Kovner, Lublinsky]

Picture from [Kovner, Lublisnky]

A pair of partons from the splitting of a colinear gluon from the projectile probes the target as a dipole of size r_{\perp} .

Domain structure: the target contains domains of oriented chromo-electric fields of size $1/Q_s$.

Small dipoles $|r_{\perp}| \ll 1/Q_s$ will probe a single domain. In momentum space, small dipole = back-to-back dijet.

Thus local correlations in the target lead to momentum correlations in the outgoing state

La duana la aduana	collisions in the CCC		
000000000000000000000000000000000000000	000000	00000000	
Single hadron	The CGC	Hadron-hadron	

hadron-hadron collisions in the CGC

Two different saturation scales

Single hadron	The CGC	Hadron-hadron	
00000000000000	000000	00000000	

Glasma graphs

An example of glasma graphs: double inclusive gluon production

Picture from [Altinoluk, Armesto]

- 2 gluons from the projectile: need to compute (AAAA)_{A1}. Assumption: each gluon comes from a different color charge density
- Scattering with the dense target via Wilson line operators: adjoint dipoles $N(p - k_1)$ and $N(q - k_2)$.
- Eikonal coupling between the *t*-channel gluons and the measured gluons via Lipatov vertices

Glasma graphs			
		0000000	
Single hadron	The CGC	Hadron-hadron	Summary

Beyond glasma graphs

- Assumption: each gluon comes from a different color charge density:
 - A single charge could emit a gluon which splits into a gluon pairs [Kovner, Lublinsky, Skokov], [Kovchegov, Skokov]
 - Other assumption to relax: mean field $\langle AAAA \rangle_{A_1} \rightarrow \langle AA \rangle_{A_1} \langle AA \rangle_{A_1}$
- adjoint dipoles $N(p k_1)$ and $N(q k_2)$.
 - Also a possibility to relax the mean field approximation: $\langle N(p-k_1)N(q-k_2)\rangle_{A_2} \rightarrow \langle N(p-k_1)\rangle_{A_2}\langle N(q-k_2)\rangle_{A_2}$
- Eikonal coupling between the *t*-channel gluons and the measured gluons via Lipatov vertices
 - · Posibility to include sub-eikonal corrections [Agostini, Altinoluk, Armesto]

000000000000000	000000	0000000	0
Overview			

Probing a single hadron

2 The Color Glass Condensate

3 Hadron-hadron collisions within the CGC framework

Single hadron	The CGC	Hadron-hadron	Summary
			•
Summary			

A few typical CGC topics:

- One-loop corrections and precision phenomenology
- Target models beyond MV
- Correlations from the domain structure, from glasma graphs and beyond
- Spin effects in the CGC?
- Odd harmonics in the CGC?