BOOST 2018

Constituent Subtraction Updates

Peter Berta¹⁾, Lucia Masetti¹⁾, David Miller²⁾, Martin Spousta³⁾

¹⁾ JGU Mainz
 ²⁾ University of Chicago
 ³⁾ Charles University in Prague

July 17, 2018

P. Berta (JGU Mainz)

Outline

- Reminder of the Constituent Subtraction
- Output Subtraction in experiments
- New developments

Reminder of the Constituent Subtraction (CS)

Constituent Subtraction (CS)

- arXiv:1403.3108
- Pileup subtraction method at the level of inputs
- Generalization of the Area Subtraction (arXiv:0802.1188)
 - exploits the background $p_{\rm T}$ density (ρ)
- Two possibilities of usage:
 - **jet-by-jet** first jet clustering, then correction of individual jets
 - whole event first correction of the whole event, then jet clustering
 - jet clustering is less biased
- Package inside fastjet-contrib

Better performance wrt Area Subtraction

Background density ρ

- ρ amount of $p_{\rm T}$ from pileup particles per unit area in the rapidity azimuth $(y-\phi)$ space
- many possibilities how to estimate ρ . One of them:
- event divided into rectangular patches in the $(y \phi)$ space; $p_{\rm T}$ of each patch:

$$p_{\mathrm{Tpatch}} = \sum_{i \in \mathrm{patch}} p_{\mathrm{T}i}$$

(2) the estimated pileup $p_{\rm T}$ density:

$$\rho = \text{median}_{\text{patches}} \left\{ \frac{p_{\text{Tpatch}}}{A_{\text{patch}}} \right\}$$

Slides from G. Soyez (BOOST2012 conference)

Whole event

- Adding ghosts to the whole event
- Jet clustering

Leading jet before correction

Leading jet before correction

- Adding ghosts to the whole event
- Iet clustering
- Matching of ghosts to particles

Leading jet after correction

- Adding ghosts to the whole event
- Iet clustering
- Matching of ghosts to particles
 - Evaluate distances between each particle-ghost pair.
 - Distance between particle i and ghost k:

$$\Delta R_{i,k} = p_{\mathrm{T}i}^{\alpha} \cdot \sqrt{\left(y_i - y_k^g\right)^2 + \left(\phi_i - \phi_k^g\right)^2}$$

• Combine each ghost-particle pair starting from lowest $\Delta R_{i,k}$:

$$\begin{array}{ll} \text{If } p_{\mathrm{T}i} \geq p_{\mathrm{T}k}^g: & p_{\mathrm{T}i} \rightarrow p_{\mathrm{T}i} - p_{\mathrm{T}k}^g & \text{otherwise:} & p_{\mathrm{T}i} \rightarrow 0 \\ & p_{\mathrm{T}k}^g \rightarrow 0 & p_{\mathrm{T}k}^g \rightarrow p_{\mathrm{T}k}^g - p_{\mathrm{T}i} \end{array}$$

• Procedure stops for $\Delta R_{i,k} > \Delta R^{\max}$

- Adding ghosts to the whole event
- Iet clustering
- Matching of ghosts to particles
 - $\bullet\,$ Free parameters: α and $\Delta R^{\rm max}$
 - small effect for jet-by-jet CS

Whole event

1

Hard scatter Pileup Ghosts 2 ¢ Whole event before correction

- Adding ghosts to the whole event

③ Matching of ghosts to particles

• same algorithm as for jet-by-jet correction

Whole event after correction

Whole event after correction

Usage of CS in experiments

Usage of CS in experiments

• Several performance studies with CS:

- ALICE (heavy-ions)
- ATLAS (proton-proton)
- CMS (heavy-ions)
- CMS (proton-proton)

• Physics results with CS:

- ALICE (heavy-ions)
- CMS (heavy-ions)

CS performance in ALICE (heavy-ions)

- Compared with Area Subtraction in arXiv:1702.00804
- Compared with Shape-expansion method in arXiv:1705.03383
- Jet-by-jet CS
- Observed better performance with CS

CS performance in ATLAS (proton-proton)

- Low $p_{\rm T}$ performance in ATLAS-CONF-2017-065
- Large-R jets performance in ATL-PHYS-PUB-2017-020
- Jet constituent multiplicity ATL-PHYS-PUB-2018-011
- Improved performance compared to the Area Subtraction
- Combination with SoftKiller (SK) (arXiv:1407.0408) leads to the best performance

ATLAS-CONF-2017-065

ATL-PHYS-PUB-2018-011

P. Berta (JGU Mainz)

Constituent Subtraction Updates

• CMS-DP-2018-024

- Jet-by-jet CS
- Inherent methods for estimation of $y \phi$ dependence of ρ :
 - y dependence -Iterative Pedestal method, EPJC 50, (2007) 117–123
 - ϕ dependence Flow Modulation, CMS-HIN-16-019

JES closure with CS

CS performance in CMS (proton-proton)

• CMS-PAS-JME-14-001

- Jet-by-jet CS
- The used CS improves jet mass, but PUPPI performs better

Usage of CS for physics results

- ALICE publications:
 - Role of Coherence Effects on Jet Quenching in Pb-Pb, arXiv:1705.03383
 - Exploring jet substructure with jet shapes in ALICE, arXiv:1704.05230
 - First measurement of jet mass in Pb-Pb and p-Pb collisions, arXiv:1702.00804
 - Jet shapes in pp and Pb–Pb collisions at ALICE, arXiv:1512.07882
- CMS publications:
 - Splitting function in pp and PbPb collisions, arXiv:1708.09429
 - Measurement of the groomed jet mass in PbPb and pp collisions, arXiv:1805.05145

 τ_{21} , arXiv:1705.03383

Splitting functions, arXiv:1708.09429

New developments

New developments

- ρ rescaling
- Studies on whole event CS
- Iterative CS

New developments - setup for performance studies

- Pythia8 simulation of signal and pileup events
- Number of pileup events, N_{PU} , is uniformly distributed in range [0,120] (LHC Run 3)
- $\bullet\,$ Particles grouped into massless towers of size 0.1×0.1 in $y-\phi$ space
- $\bullet~{\rm CS}$ correction of whole event up to $|\eta|<5$
- Using CS parameter $\alpha=0$
- Using ρ rescaling (rapidity dependence)
- Figures of merit:

 $\bullet {
m Bias} = rac{\langle x - x^{
m true}
angle}{\langle x^{
m true}
angle}$ - the closer to zero, the better

• Resolution =
$$rac{\mathrm{RMS}(x-x^{\mathrm{true}})}{\langle x^{\mathrm{true}}
angle}$$
 - the smaller, the better

New developments ρ rescaling

ρ rescaling

- The estimated ρ is by default constant in $y \phi$ space
- But ρ can depend on y and ϕ :

Rapidity dependence from Pythia (massless inputs)

ρ rescaling

- Important for CS:
 - $\bullet\,$ more precise estimation of $\rho\,$
 - the ghosts p_{T} are scaled according to the $y-\phi$ dependence
- Done by fastjet's background estimation classes
- Limited number of rescaling classes:
 - rapidity parametrized as polynom
- New rescaling classes within CS:
 - rapidity in 1D histogram
 - rapidity in 1D histogram and azimuth parametrized with elliptic flow parameters,...
- For usage, see example: https://fastjet.hepforge.org/trac/browser/contrib/contribs/ConstituentSubtractor/ tags/1.3.1/example_background_rescaling.cc

- ρ rescaling using rapidity in 1D histogram (CS with $\Delta R^{\text{max}} = 0.25$) • Dependence on jets η is removed
 - P. Berta (JGU Mainz)

New developments Studies on whole event CS

- $\bullet\,$ Too large values of $\Delta R^{\rm max}$ lead to overcorrection of hard-scatter jets
 - The hard-scatter jets act as magnets for ghosts

Whole event CS - $p_{\rm T}$ resolution

• Best resolution for low $\Delta R^{\rm max}$ (e.g. 0.25) - but bias is larger for very low values

Whole event CS - bias summary, $N_{\rm PU} \in [100, 120]$

• To get minimal bias, $\Delta R^{\max} \approx 0.25$ is preferred for small-R jets, while $\Delta R^{\max} \approx 0.7$ is preferred for large-R jets

P. Berta (JGU Mainz)

Whole event CS - resolution summary, $N_{\rm PU} \in [100, 120]$

• $\Delta R^{\max} \approx 0.25$ provides the best resolution in most cases

P. Berta (JGU Mainz)

- \bullet Small $\Delta R^{\rm max}$ yields to much better resolution than jet-by-jet CS
 - But it may cause a larger bias
- It is hard to find $\Delta R^{\rm max}$ parameter which is optimal for each jet definition, jet observable, $p_{\rm T}$ bin.

• Improvement to the above problem: Iterative CS

New developments Iterative CS

Iterative CS (ICS)

- Application of the whole event CS several times
- $\bullet\,$ After each CS application, the remaining unsubtracted $p_{\rm T}$ is redistributed
- For each iteration, different CS parameters can be used
- Available in fastjet-contrib since ConstituentSubtractor v1.3.0
- For usage, see example: https://fastjet.hepforge.org/trac/browser/contribs/ConstituentSubtractor/ tags/1.3.1/example_whole_event_iterative.cc

φ

Hard scatter

Pileup

Ghosts

Iterative CS - bias, $N_{\rm PU} \in [100, 120]$

Bias reduced in most cases with ICS

• can be further reduced with calibration

Iterative CS - resolution, $N_{\rm PU} \in [100, 120]$

Resolution much better with ICS

Comparison with SK - bias, $N_{\rm PU} \in [100, 120]$

• Performance of SK and CS+SK also depends largely on their parameters

• The shown CS+SK has larger bias for small-R, but lower bias for large-R jets

P. Berta (JGU Mainz)

Comparison with SK - resolution, $N_{\rm PU} \in [100, 120]$

Resolution similar for CS+SK and ICS

better than simple SK

P. Berta (JGU Mainz)

Iterative CS optimization - bias, $N_{\rm PU} \in [100, 120]$

• Bias can be reduced when optimizing for each jet definition separately

Iterative CS optimization - resolution, $N_{\rm PU} \in [100, 120]$

Similar resolution for the three tested ICS methods

- Improved performance compared to simply doing whole event CS
- Bias can be further reduced when optimizing for each jet definition separately or by calibration
- Investigated two iterations so far
 - three iterations or combination with SK can lead to further improvement
- The performance with real detector can be different
- Each experiment should find its own optimal parameters

Summary

- Jet-by-jet CS used among the heavy-ion community for physics results
- \bullet Recommending to use ρ rescaling always.
 - Examples: https://fastjet.hepforge.org/trac/browser/contrib/contribs/ConstituentSubtractor/ tags/1.3.1/example_background_rescaling.cc
- Iterative CS brings large improvement in resolution keeping the bias well controlled
 - Please, try it. Example: https://fastjet.hepforge.org/trac/browser/contrib/contribs/ConstituentSubtractor/ tags/1.3.1/example_whole_event_iterative.cc

• Let us know if you would like to have new features in the fastjet-contrib implementation of Constituent Subtraction

BACKUP

- for each event
 - () estimate the pileup $p_{\rm T}$ density, $\rho,$ in the event,
 - add ghosts (infinitesimally small p^g_T) among particles in the event and apply jet clustering algorithm to all particles and ghosts ⇒ the jets are composited from particles and ghosts,
- for each jet in the event
 - 3 set for each ghost $p_{\mathrm{T}}^g = \rho A_g$
 - evaluate distance $\Delta R_{i,k}$ between particle *i* and ghost *k* for each possible particle-ghost pair and sort them in ascending order:

$$\Delta R_{i,k} = p_{\mathrm{T}i}^{\alpha} \cdot \sqrt{(y_i - y_k^g)^2 + (\phi_i - \phi_k^g)^2}.$$
 (1)

 α - free parameter

(a) iteratively change transverse momenta by applying the following procedure for each ghost-particle pair until no more pairs remain or $\Delta R_{i,k} > \Delta R^{\max}$:

If
$$p_{\mathrm{T}i} \ge p_{\mathrm{T}k}^g$$
: $p_{\mathrm{T}i} \to p_{\mathrm{T}i} - p_{\mathrm{T}k}^g$, otherwise: $p_{\mathrm{T}i} \to 0$,
 $p_{\mathrm{T}k}^g \to 0$; $p_{\mathrm{T}k}^g \to p_{\mathrm{T}k}^g - p_{\mathrm{T}i}$. (2)

o after the iterative process, discard all particles with zero transverse momentum.

CS parameters

- ΔR^{\max} controls how distant particle-ghost pairs can be combined
 - low effect for jet-by-jet CS
 - huge effect for whole event CS
- α with $\alpha>0,$ the low $p_{\rm T}$ particles are favored in the subtraction procedure
 - very low effect for jet-by-jet CS
 - it can lead to slightly better performance for whole event CS
- ghost area specifies the density of ghosts
 - the smaller, the better
 - but the correction time gets larger with smaller ghost area

• Evaluated the average scalar sum of $p_{\rm T}$ from all particles within the event

- $\Delta R^{\rm max}=\infty$ removes $p_{\rm T}$ corresponding to $p_{\rm T}$ from pileup \Rightarrow the background estimation works well
- Lower ΔR^{\max} keeps certain fraction of pileup in events, e.g. $\Delta R^{\max} = 0.25$ keeps $\sim 12\%$ of pileup $p_{\rm T}$ within event on average

Whole event CS - $\Delta R^{ m max}$ parameter

- Also the optimal $\Delta R^{\rm max}$ parameter varies for jet observables, $p_{\rm T}$ ranges, metrics, . . .
- In our studies, we found that $\Delta R^{\max} \in [0.2, 0.5]$ always lead to better performance wrt jet-by-jet correction
 - Experiments should find their own optimal value of ΔR^{\max}

P. Berta (JGU Mainz)

Iterative CS, jet pt

Iterative CS, jet mass

