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What can it do?
Is it relevant for us??

In distant future, right?
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Quantum Computing in a Nutshell 
• Fundamentals for quantum computing 
• Gate-based quantum computing 
• Quantum annealing 

Quantum Machine Learning for HEP 
• Classification with quantum annealing 
• Classification with gate-based quantum algorithm 

Other HEP Applications 

Outline of the Talk
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Quantum and High-Energy Physics
Fundamental constituents in nature governed by quantum mechanics 
Particle physics directly accessing quantum properties in nature 
Typically large computing resources required in HEP experiment

Quantum computing : 
‣ Potential exponential speed-up in certain computational tasks 
‣ Huge representational power due to complex quantum space 

   10 qubits  ➡ Represent ~103 states 
   50                ➡               ~1015 states 
 300                ➡               ~1090 states  ≈  # of atoms in the Universe!!

HEP is an interesting place 
to explore the power of 
quantum computing 
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Growth of Quantum Computing
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‣ Rapid progress over last years, largely driven by 
superconducting qubit system 

‣ “Quantum Volume” (IBM’s performance metric) doubles 
every year so far



Gate-based 
Quantum Computing

‣ Develop circuit composed of 
quantum gates (= algorithm) for 
each problem 

‣ Applicable to wide variety of 
problems (➡ Universal)

‣ Extract solution (= lowest energy 
state) by slowly changing 
hamiltonian 

‣ Suitable for optimization problem

Energy

Quantum 
tunneling 

Adiabatic 
evolution

classical path

tunneling
Solution Solution

Quantum Computing
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Quantum Computing Fundamentals 
Qubit = a basic unit of quantum information : 

• 2-state quantum-mechanical system 
• Represent arbitrary state of the superposition of |0〉 and |1〉 
• State controlled by applying unitary operator (= gate)

Strengths and Weaknesses of Quantum Computing 

Zahid Hussain 
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Quantum Computing Fundamentals 
Qubit = a basic unit of quantum information : 

• 2-state quantum-mechanical system 
• Represent arbitrary state of the superposition of |0〉 and |1〉 
• State controlled by applying unitary operator (= gate)

Bloch sphere representation of a qubit state : 

• Superposition state given by 𝛳 and 𝜙 angles 
• Global phase γ not contribute to measurement

|ψ⟩ = eiγ(cos(θ/2) |0⟩ + eiϕ sin(θ/2) |1⟩)

(Smite-Meister - CC BY-SA 3.0) 
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Quantum Computing Fundamentals 
Qubit = a basic unit of quantum information : 

• 2-state quantum-mechanical system 
• Represent arbitrary state of the superposition of |0〉 and |1〉 
• State controlled by applying unitary operator (= gate)
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Quantum gates to control quantum states : 
• Single-qubit gates, e.g, Pauli-X/Y/Z 

• 2-qubit gates, e.g, CNOT 

• Represented as 2n×2n unitary matrix for  
n-qubit gate

Bloch sphere representation of a qubit state : 

• Superposition state given by 𝛳 and 𝜙 angles 
• Global phase γ not contribute to measurement

|ψ⟩ = eiγ(cos(θ/2) |0⟩ + eiϕ sin(θ/2) |1⟩)

Wikipedia

https://en.wikipedia.org/wiki/Quantum_logic_gate


Quantum Computing Fundamentals 
Quantum algorithm (= circuit composed of gates) to solve problem 
Quite different from classical computing algorithm: 
‣ Measurement of N qubits gives just information of N classical bits… 
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Quantum algorithm (= circuit composed of gates) to solve problem 
Quite different from classical computing algorithm: 
‣ Measurement of N qubits gives just information of N classical bits… 

Quantum Computing Fundamentals 

11

|000〉

|001〉

|010〉

|011〉

|100〉

|101〉

|110〉

|111〉

4月

5月

6月

7月

0 60

110 == 2


Classical Quantum

?

observed affected

Superposition Entanglement Interference

Exploit these properties in quantum space to enhance the 
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Quantum Computers IBM Q
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Superconducting qubit machines 
Publicly available from 

‣ IBM, Rigetti (gate-based) 
- 5/15/20/28/53 qubits from IBM 
- Coherence time ~ O(10) μs 

‣ D-Wave (quantum annealing) 
- 2,048 qubits (not full connection) 
- Annealing time = 1~2,000 μs 

Coherence time ~ O(ns) D-Wave

Typically trade-off between the number 
of qubits and coherence time
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Qubits

All configurations at ground state 
for initial hamiltonian
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How Quantum Annealing Works
All configurations at ground state 
for initial hamiltonian
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Solution found!

Qubits
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Slowly introduce problem 
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ground state at minimum

All configurations at ground state 
for initial hamiltonian
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• Classification with quantum annealing 

• Classification with gate-based quantum algorithm 
- Wisconsin group 

- Tokyo ICEPP group

Quantum Machine Learning for HEP
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ML with Quantum Annealing
A. Mott et al., Nature 550, 375 (2017)

‣ Have weak classifier ci(x) from 
each input variable 
‣ Define strong classifier Rw(x) 

as a linear combination of ci(x)

Find the configuration of w 
that gets Rw to truth label y

Rw(x) = ∑ wici(x)

Rw

c1

c2

cN

w1

w2

wN

wi ∈ {0, 1}N
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𝜹w  ∝  ∑i,j Cijwiwj + ∑i (𝜆 − 2Ci)wi

Cij = ∑ ci(x)cj(x)
Ci = ∑ ci(x)y

Minimize objective function 𝜹w = ||y − ∑wici(x)||2

Solving as QUBO (Quadratic Unconstrained 
Binary Optimization) using quantum annealing

https://www.nature.com/articles/nature24047


Signal Background

QAML Classification

‣ Photon pT cuts applied for realistic trigger 
‣ Di-photon mass cut applied to select “Higgs-like” events

36 variables constructed in total ➞ Used as weak classifiers 
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Attempt to classify H→γγ signal from background



QAML Results

Nevents = 100

𝜆 = 0.05

‣ Annealing (Quantum, QA or Simulated, SA) has comparable 
performance to the classical ML method like DNN or XGB 

‣ Indication that annealing has better performance at small sample 

‣ DNN or XGB becomes more performant when adding more data
19

QA = D-Wave



ML with Gate-based Algorithm

K. Mitarai et al., arXiv:1803.00745

〈 Z 〉

Update 𝞱 
parameters 

U(𝞱)| 〉0 Uin(𝔁)

Evaluate cost 
function

Input {𝔁data, 𝒚label}

Training

V. Havlicek et al., arXiv:1804.11326
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Use method based on variational quantum circuit

https://arxiv.org/abs/1803.00745
https://arxiv.org/abs/1804.11326


Chen Zhou (University of Wisconsin)       EPS-HEP 2019 July 12, 2019

Our program with IBM Qiskit

Our preliminary program is to: 
     Employing SVM Quantum Variational (QSVM) method 
for LHC High Energy Physics (HEP) analysis with the 
environment of IBM Qiskit, for example ttH (H → 𝜸𝜸), 
Higgs production in association with two top quarks 
analysis.
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* SVM = Support Vector Machine

Our Goal:
Perform LHC High Energy Physics analysis with 
Quantum computing

* IBM Qiskit = IBM Quantum Information Science Kit

(Top)

(Anti-top)

(Higgs)

Application of variational quantum algorithm to HEP data analysis 

Performance studied using simulator and IBM quantum machine

Talk by S. Sun (Wisconsin) at CERN Openlab Technical Workshop

ttH(➞γγ) Classification ~ Wisconsin ~
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Classification of ttH(➞γγ) signal

https://indico.cern.ch/event/853334/contributions/3657795/


ttH(H➞𝜸𝜸) AUC AUC
Classical SVM 0.846 ± 0.037
Classical BDT 0.829 ± 0.017
Quantum Simulation 0.825 ± 0.018
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Workflow of gate-based QML

# of variables = 45

5 variables, 200 events

ttH(➞γγ) Classification

Simulator



ttH(H➞𝜸𝜸) AUC AUC
Classical SVM 0.856
XGBoost BDT 0.816
Quantum Simulation with Noise 0.837
Quantum Hardware 0.758
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ttH(➞γγ) Classification

Tested on 20-qubit IBM machine: 
‣ Quantum hardware learns how to 

differentiate between signal and 
background 
‣ Performance (AUC) ~10% worse on 

hardware than quantum simulator/
classical method

5 variables, 100 events



SUSY signal classification using simulator 
and IBM quantum machine

g

g

h

χ+

χ−

χ0

χ0

ν

ℓ+

ℓ−

ν

Signal

SUSY Classification ~ Tokyo ICEPP ~

q

q̄

q′

W

W

ℓ+

ν

ν

ℓ−

Background

24

‣ Chargino-pair production with 
leptonic W decays as signal 
‣ SUSY dataset in UC Irvine machine 

learning repository used

arXiv:2002.09935 
Submitted last week!
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SUSY Classification

Performance of quantum algorithm comparable to 
BDT/DNN at small training set with small # of variables

Events

AU
C
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Compared with BDT and DNN : 

‣ BDT and DNN models 
optimized at each training set 
to avoid over-training 

‣ Classical algorithms out-
perform at large training set

QCL = Quantum algorithm with simulator
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Events

AU
C

Compared with DNN with 
similar # of parameters

Possible advantage of quantum algorithm over DNN at 
small training set, when # of parameters are chosen to 
be same

SUSY Classification

DNN  
3-variables

QCL = Quantum algorithm with simulator



Other HEP Applications
Tracking ‣ Quantum Annealing 

Qallse (HEP.QPR) 

‣ Digital (non-quantum) 
Annealing 

‣ Gate-based algorithm

H. Gray, P. Calafiura, 
et. al (LBNL) 
   arXiv:1902.08324

R. Sawada, KT (Tokyo) 

Parton Shower 
Simulation

C. Bauer, B. Nachman 
et. al (LBNL) 
   arXiv:1904.03196, 

            1901.08148 f1

f1/2
𝜙

f1/2

𝜙Boson

Fermion

‣ Interference from 
different intermediate 
particles

Vertexing
Unfolding
Jet Clustering

arXiv:1903.08879

arXiv:1908.08519

arXiv:1908.08949
27

Growing interests over 
the last years!!

https://github.com/derlin/hepqpr-qallse
https://hep-qpr.lbl.gov
https://arxiv.org/abs/1902.08324
https://sites.google.com/view/icepp
https://arxiv.org/abs/1904.03196
https://arxiv.org/abs/1901.08148
https://arxiv.org/abs/1903.08879
https://arxiv.org/abs/1908.08519
https://arxiv.org/abs/1908.08949


Summary

• Presented examples of quantum computing application to 
machine learning 

• Only at the (very) beginning of the exploration of quantum 
computing for HEP 

• Need useful application to take advantage of quantum 
computing for future QC development (ML as an example)

What to expect if x100 more powerful QC in ~7 years 
(when the HL-LHC starts)?
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Many technological challenges ahead (e.g, scalability) before 
making quantum computers competitive to classical ones, but…



Backup
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Quantum Circuit Learning
Implemented using Qulacs simulator 
  (implemented in C/C++ with Python interface) 

‣ Output states from U(𝞱) measured using Pauli-Z operators 
‣ Cross-entropy used as cost function 
‣ Parameters optimized using COBYLA by minimizing the cost function

Encode input data 
to quantum state

‣ Use time-evolution 
gate e-iHt to create 
entanglement 
‣ Rotation gates with 

parameters
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https://arxiv.org/abs/1803.00745
http://qulacs.org
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V. Havlicek et al., 
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Johannesburg

Tested using 20-qubit IBM Q 
Network device and QASM 
simulator

Implemented using Qiskit Aqua framework

‣ Single-qubit rotation gates in Uin(x) 
‣ Entangling gate (Uent) + rotation gates in U(𝜽) 
‣ Cross-entropy loss with COBYLA minimization
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https://arxiv.org/abs/1804.11326
https://qiskit.org


QCL Results (Simulator)

Signal Efficiency
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Compared with ML methods: Boosted-Decision Tree and Deep NN 
‣ BDT : Gradient boost, 1-3 max depth, 10-1000 #trees 
‣ DNN : Dense, 2-6 hidden layers, 16-256 nodes, RELU, Adam, εlearning=0.001

7-variables, 
Nevents=10000

arXiv:2002.09935

https://arxiv.org/abs/2002.09935


VQC Results (Simulator & Hardware)
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Tested 3-variable classification with 40 training events 
‣ Cost function reaches minimum after ~50 iterations 

- Slight offset for real device (likely caused by error due to noise) 
‣ ROC curves indicate VQC acquires discrimination power with real device 

- Significant over-training observed due to small sample size

Training

Testing

arXiv:2002.09935

https://arxiv.org/abs/2002.09935
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Tested 3-variable classification with 40 training events 
‣ Cost function reaches minimum after ~50 iterations 

- Slight offset for real device (likely caused by error due to noise) 
‣ ROC curves indicate VQC acquires discrimination power with real device 

- No over-training seen once dataset size is increased

QASM simulator only

VQC Results (Simulator & Hardware)
arXiv:2002.09935

https://arxiv.org/abs/2002.09935


Input Features
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