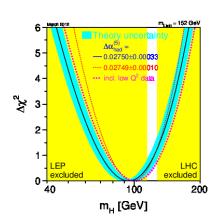
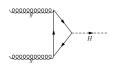

Searches for Higgs Boson Decays with ATLAS

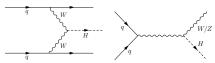
Rustem Ospanov for the ATLAS collaboration

University of Pennsylvania


May 4, 2012

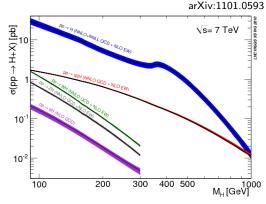
- Overview
- ▶ SM Higgs searches
- SM Higgs combination
- MSSM Higgs searches




SM Higgs boson

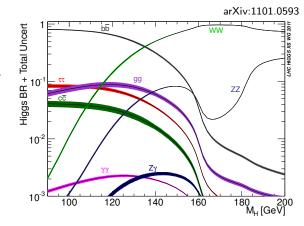
- Higgs mechanism provides an explanation for the Electroweak Symmetry breaking and generation of the W and Z masses
- Predicts a not yet observed neutral scalar particle with unknown mass and small cross-section
- Direct searches at LEP set lower bound m_H > 114.4 GeV at 95% CL
- ▶ Tevatron excludes $100 < m_H < 106$ GeV and $147 < m_H < 179$ GeV at 95% CL
- Searching for the Higgs boson is one of the primary goals of LHC
- ► Higgs searches require sophisticated detectors designed to stringent performance requirements for particle identification, object energy/momentum measurements, E_T^{miss} measurement, b-tagging, etc

Higgs production



- Gluon-gluon fusion (ggF)
 - ► POWHEG+PYTHIA
 - ► p_T with HqT v2.0
- Vector boson fusion (VBF)
 - ► POWHEG+PYTHIA
- Associated production:
 - ► WH/ZH
 - ► t̄tH
 - ► PYTHIA
- ▶ Mass line shape uncertainty:
 - ► $(150\%) \times (\frac{m_H}{T_{eV}})^3$

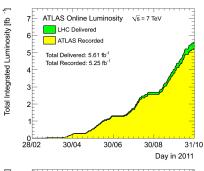
Theory uncertainties:

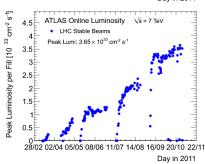

	ggF	VBF	WH/ZH	t₹H
QCD scale	+12% - 8%	$\pm 1\%$	$\pm 1\%$	+3% - 9%
$PDF+\alpha_S$	±8%	±4%	±4%	±8%

Higgs decays

Higgs couples to mass

- WW and ZZ dominate when kinematically allowed
- Many competing channels for $m_H < 160 \text{ GeV}$
- ► SM backgrounds inhibit searches in channels with jets and/or neutrinos
- ► $B(W \to I\nu) = 10.8\%$ $B(Z \to II) = 3.4\%$
- Width for $m_H < 170$ GeV: $\Gamma_H < 100$ MeV

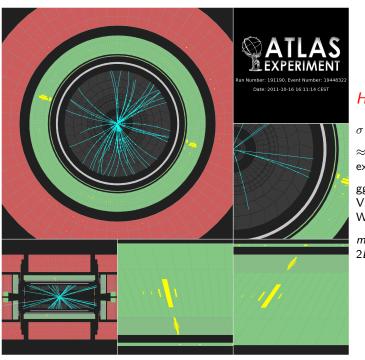



ATLAS experiment

- ► ATLAS is 93.5% efficient during stable LHC collisions
- ▶ Recorded $\int \mathcal{L} = 5.25 \ fb^{-1}$
- ► Luminosity uncertainty is 3.9%
- High trigger efficiency for Higgs searches
 - Single lepton, di-lepton and di-photon triggers

LHC peak luminosity in 2011:

- ho $\mathcal{L}_{peak} \approx 3.6 \times 10^{33} cm^{-2} s^{-1}$
- ▶ pp inelastic ≈ 210 MHz
- $ightharpoonup Z
 ightarrow \mu \mu pprox 3 Hz$
- ► $H[125 \ GeV] \rightarrow WW \rightarrow l\nu l\nu$ $\approx 0.0003 \ Hz$


SM Higgs Boson Decays

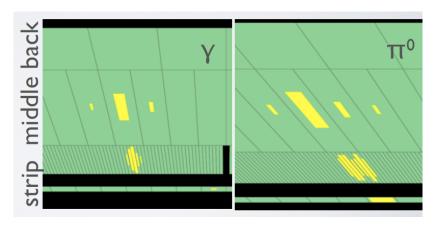
	9111 1 11665 2		
Channel	m_H range (GeV)	$\int \mathcal{L} \; (fb^{-1})$	Reference
$H o \gamma\gamma$	110 - 150	4.9	arXiv:1202.1414
H o ZZ o 4I	110 - 600	4.8	arXiv:1202.1415
H o ZZ o II u u	200 - 600	4.7	CONF-2012-016
H o ZZ o IIqq	200 - 500	4.7	CONF-2012-017
$H o WW o l \nu l \nu$	110 - 600	4.7	CONF-2012-012
H o WW o I uqq	300 - 600	4.7	CONF-2012-018
H o au au	100 - 150	4.7	CONF-2012-014
VH o Vbb	110 - 130	4.7	CONF-2012-015
SM H combination	100 - 600	4.6-4.9	CONF-2012-019

- ▶ A mass resonance search for $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ \rightarrow 4I$
- ▶ A counting experiment for final states with neutrinos
- Limited mass resolution for final states with jets

Statistical procedure:

- Profile likelihood ratio to test signal strength $\mu = \sigma/\sigma_{SM}$ (Eur.Phys.J.C71:1554,2011)
- Exclusion limits on μ are set at a 95% confidence level with the CLs method (J. Phys. G 28 (2002) 2693-2704)
- ▶ Look Elsewhere Effect for resonance searches (Eur.Phys.J.C70:525,2010)

 $\sigma \approx$ 40 fb

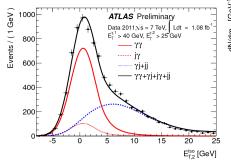

pprox 70 signal events expected in 4.9 fb^{-1}

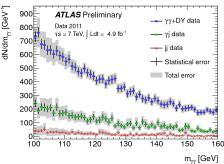
ggF: 87% VBF: 7% W/ZH: 5%

 $m_{\gamma\gamma}^2 =$

 $2E_1E_2(1-\cos\alpha)$

$H \rightarrow \gamma \gamma$: photon identification

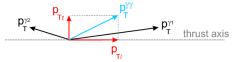


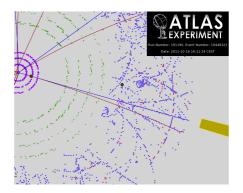

- Fine η granularity in the strip layer to reject π^0
- ► EM shower shape to reject fake photons from jets $\approx O(8000)$ jet rejection 85% photon efficiency
- Longitudinal segmentation to measure shower direction and to improve energy measurement

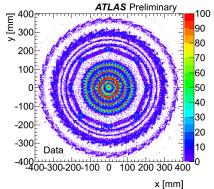
$H \rightarrow \gamma \gamma$: analysis strategy

- ▶ Two isolated photons with $p_T > 40,25$ GeV
- Search for a narrow mass peak in di-photon mass spectrum
- Requires excellent EM energy resolution
- ▶ Split events in 9 categories to optimize signal/background
- ▶ Irreducible SM backgrounds are fitted from sidebands
 - ▶ Background composition measured from data (for cross-checks)

$\gamma\gamma$	$j\gamma$	jj	Z/γ^*
$71 \pm 5\%$	$23 \pm 4\%$	$5\pm3\%$	$0.7 \pm 0.1\%$

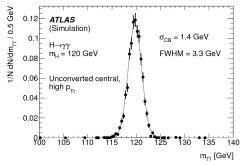


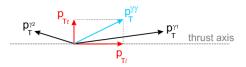



$H \rightarrow \gamma \gamma$: analysis categories

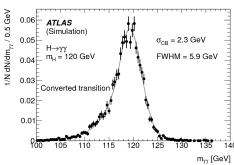
9 photon categories:

- Converted and unconverted
- ► Central, transition region and rest
- ▶ High and low $p_T(\gamma \gamma)$ orthogonal to the thrust axis divided at 40 GeV




$H \rightarrow \gamma \gamma$: analysis categories

9 photon categories:

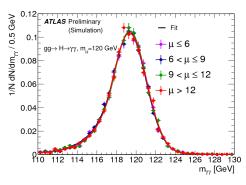

- Converted and unconverted
- Central, transition region and rest
- ▶ High and low $p_T(\gamma \gamma)$ orthogonal to the thrust axis divided at 40 GeV



Worst: $\sigma = 2.3$ GeV, S/B=0.01

$H \rightarrow \gamma \gamma$

- Selected 22489 events
- ▶ $m_H = 125 \text{ GeV}$:
 - Expect 69 signal events
 - ► Signal efficiency is 35%
- Fit signal with Crystal Ball+ Gaussian
- Fit background with exponential
- ▶ Background modeling uncertainty is ±0.1 − 7.9 events depending on photon category

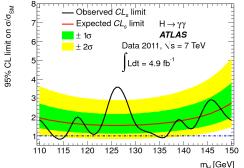


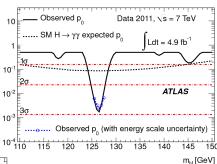
$H \rightarrow \gamma \gamma$: systematic uncertainties

Event vield:

Efficiency	$\pm 11\%$
Pileup effects	±4%
Isolation	±5%
Trigger efficiency	$\pm 1\%$
Cross-section	+15% - 11%
Higgs p_T modeling	$\pm 1\%$
Total	≈ 20%

Mass resolution.	
Calorimeter energy resolution	±12%
Photon energy calibration	±6%
Pileup effect	±3%
Photon angle	$\pm 1\%$
Total	$\approx 14\%$

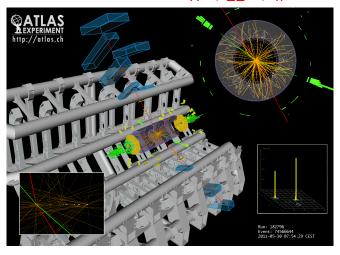

- ▶ Energy scale known to $\approx 0.5\%$ at m_Z
- ► Linear response at < 1%
- ▶ Electron response in data is transferred to photons with MC


$H \rightarrow \gamma \gamma$: results

Local p_o

Consistency of observed data with background only hypothesis:

- The largest excess is at 126.5 GeV with local significance of 2.8 σ
- ▶ 1.5 σ with look-elsewhere effect in the range 110-150 GeV

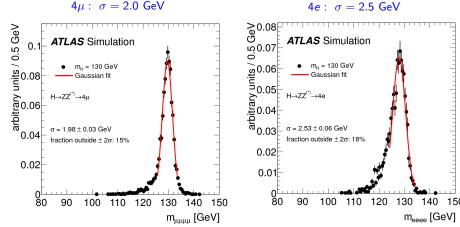


Exclusion limits:

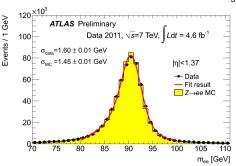
- SM Higgs excluded at 95% confidence level in the ranges 113-115 GeV and 134.5-136 GeV
- ▶ Effect from the energy scale uncertainty on the Higgs mass is $\approx 0.7 \text{ GeV}$

$H \rightarrow ZZ \rightarrow 4I$

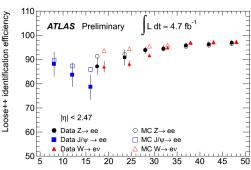
 $m_H=130~GeV$:


 $\sigma \approx$ 3 fb

 \approx 2.6 signal events expected in 4.9 fb^{-1}

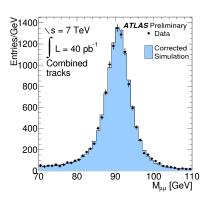

ggF: 88% VBF: 7% W/ZH: 5%

$H \rightarrow ZZ \rightarrow 4I$: analysis strategy

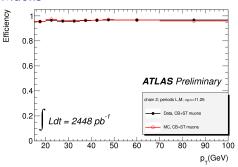

- Four isolated electrons or muons with p_T > 20, 20, 7, 7 GeV
- One pair of leptons must come from Z decay
- ▶ Search for a narrow mass resonance
- ▶ 4 event categories: 4*e*, 2*e*2 μ , 4 μ
- ► Irreducible SM ZZ* background
- ▶ Reducible Z+jets and $t\bar{t}$ backgrounds

- ► Electron reconstruction and identification efficiency 85 90%
- ▶ Understand electron performance with benchmark data processes: $J/\psi \rightarrow ee$, $Z \rightarrow ee$ and $W \rightarrow e\nu$
- Track and calorimeter based isolation

Electrons



E_⊤ [GeV]

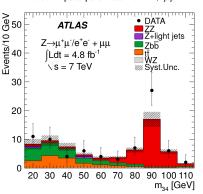

Systematic uncertainties:

- ► Efficiency: < 3%
- ► Energy scale: < 1%
- ► Energy resolution: < 0.5%

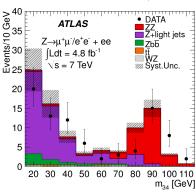
- ► Muon reconstruction and identification efficiency > 95%
- Accurate alignment of inner detector and muon system (MS)
- Combined momentum measurement using ID and MS

Muons

Systematic uncertainty:

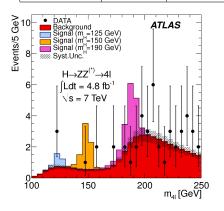

- ► Efficiency: < 1%
- ▶ Momentum resolution: < 1%

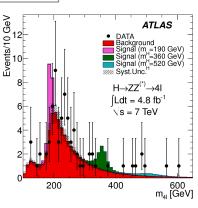
$H \rightarrow ZZ \rightarrow 4I$: backgrounds


- ► Normalize ZZ^(*) from simulation
- ▶ Normalize reducible backgrounds from control regions
 - ► Z+jets background relax lepton selection cuts
 - $ightharpoonup t\overline{t} e\mu$ channel

$m_{4I} < 180 \; GeV$	4μ	$2e2\mu$	4e
$ZZ^{(*)}$	2.1 ± 0.3	2.8 ± 0.6	1.2 ± 0.3
$Z + jet$ and $t\bar{t}$	0.16 ± 0.06	1.4 ± 0.5	1.6 ± 0.7

Relax impact parameter for $Z + \mu\mu$

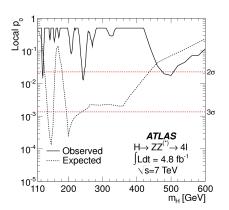

Relax isolation cut for Z + ee

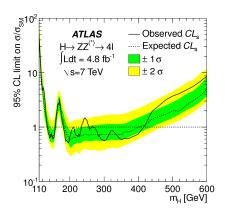


$H \rightarrow ZZ \rightarrow 4I$: four-lepton invariant mass

- ▶ Selected 71 candidate events
- ▶ Expect 62 ± 9 background events
- ▶ Fit four-lepton mass spectrum for Higgs signal

$m_{4I} < 180 \; GeV$	4μ	$2e2\mu$	4 <i>e</i>
Total Bkg.	2.2 ± 0.3	4.3 ± 0.8	2.8 ± 0.8
$m_H=130~{ m GeV}$	1.00 ± 0.17	1.22 ± 0.21	0.43 ± 0.08
Data	3	3	2

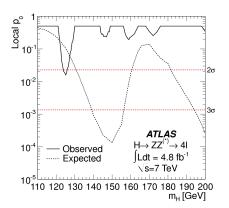

$H \rightarrow ZZ \rightarrow 4I$: results

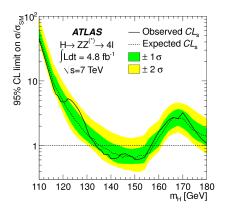

Consistency of observed data with background only hypothesis:

- \blacktriangleright Excesses at 125 GeV, 244 GeV and 500 GeV with local significances of 2.1, 2.2 and 2.1 σ
- ▶ None of these excesses is significant with the look-elsewhere effect included

Exclusion limits:

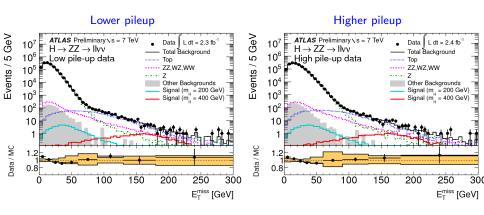
► SM Higgs is excluded in the mass ranges 134-156 GeV, 182-233 GeV, 256-265 GeV and 268-415 GeV at the 95% confidence level

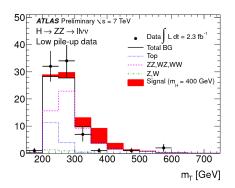

$H \rightarrow ZZ \rightarrow 4I$: results

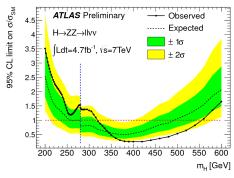

Consistency of observed data with background only hypothesis:

- \blacktriangleright Excesses at 125 GeV, 244 GeV and 500 GeV with local significances of 2.1, 2.2 and 2.1 σ
- ▶ None of these excesses is significant with the look-elsewhere effect included

Exclusion limits:

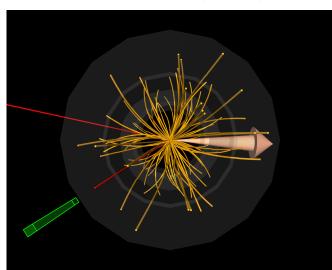

► SM Higgs is excluded in the mass ranges 134-156 GeV, 182-233 GeV, 256-265 GeV and 268-415 GeV at the 95% confidence level





$H \rightarrow ZZ \rightarrow II\nu\nu$: analysis strategy

- ▶ Pair of isolated electrons or muons consistent with Z decay
- ▶ Require lepton $p_T > 20$ GeV and significant missing transverse energy
- Several analysis categories to improve signal sensitivity
- Control regions for main backgrounds
 - ► Top, di-bosons, Z+jets/W+jets
- ▶ Search for an excess of events in transverse mass distribution

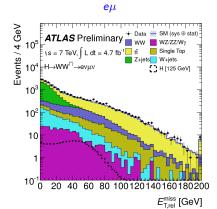


- Search for an excess of events in transverse mass distribution
- ▶ Split the analysis at $m_H = 280 \text{ GeV}$
- SM Higgs is excluded in the mass range 320-560 GeV at the 95% confidence level
- Main uncertainties are from background normalizations which are estimated from data

$H \rightarrow WW \rightarrow l\nu l\nu$

 $m_H = 125 \; GeV$:

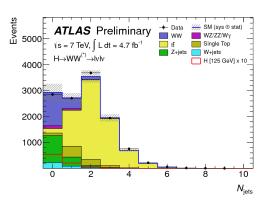
 $\sigma pprox$ 100 fb


pprox 181 signal events expected in 4.9 fb^{-1}

A larger rate but difficult and diverse backgrounds

$H \rightarrow WW \rightarrow l\nu l\nu$: analysis strategy

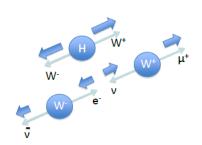
- ▶ Pair of isolated opposite sign leptons ($p_T > 25, 15 \text{ GeV}$)
- lacktriangle Veto Z with mass window $|\emph{m}_{\it{II}}-\emph{m}_{\it{Z}}|<$ 15 GeV for $\emph{ee},\mu\mu$
- ► Three lepton flavor channels plus jet multiplicity bins:
 - ightharpoonup ee, $e\mu$ and $\mu\mu$
 - $E_{T.miss}^{rel} > 45 \ GeV(25 \ GeV)$ for ee and $\mu\mu$ (e μ)
- ▶ Irreducible background from SM WW
- ▶ Reducible backgrounds from SM processes with mis-identified objects: W+jets, Z+jets, $t\bar{t}$, single top, $W + \gamma$, $W + \gamma^*$, WZ, ZZ

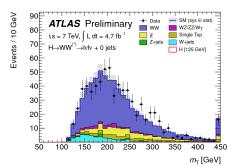

 $\mu\mu$ Events / 4 GeV $E H \rightarrow WW^{(*)} \rightarrow \mu \nu \mu \nu$ H [125 GeV] 10⁶ 10⁵ 10⁴ 10^{3} 10^{2} 10 E_{T rel} [GeV]

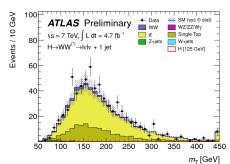
$H \rightarrow WW \rightarrow l\nu l\nu$: jet multiplicity

Split by jet multiplicity:

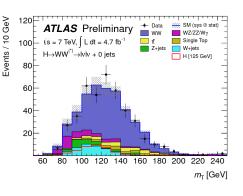
- ▶ 0-jet: ggF vs. SM WW $\pm 25\%$ for $\sigma_{ggF}(m_H = 125 \ GeV)$
- ▶ 1-jet: ggF vs. SM WW and top $\pm 37\%$ for $\sigma_{ggF}(m_H=125~GeV)$
- ▶ 2-jet: VBF vs. SM WW and top $\pm 5\%$ for $\sigma_{VBF}(m_H=125~GeV)$

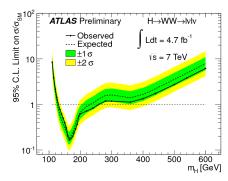



Main detector uncertainties:

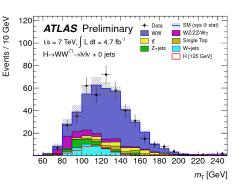

- ▶ Jet energy scale: 2-14% as a function of jet p_T and η
- ▶ Jet energy from pileup: < 5% for jet $p_T > 25$ GeV
- ▶ B-tagging: 5 14% as a function of jet p_T
- Missing energy: estimated by varying amount of pileup

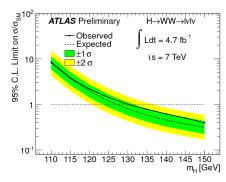
$H \rightarrow WW \rightarrow l\nu l\nu$: selections


- 0-jet: $p_{T,\mu\mu,ee} > 45$ GeV to suppress Z+jet
- ▶ 1-jet: veto events with b-jets and high p_T^{total}
- 2-jet: forward tag jets for VBF
- Kinematic cuts to reduce SM WW
- SM WW normalized from data for m_H < 200 GeV
- ► Top normalized from data b-tagged samples
- ▶ W+jet is taken fully from data
- ightharpoonup Z/ γ^* +jet normalized from data
- \blacktriangleright W γ , W γ^* , WZ and ZZ from MC



$H \rightarrow WW \rightarrow l\nu l\nu$: results





- Fit transverse mass distribution
- SM Higgs boson is excluded in the range 130-260 GeV at the 95% confidence level

- 1	Stat only errors:	0-jet	1-jet	2-jet
	$m_H=125~{\it GeV}$	37.7 ± 0.2	9.4 ± 0.1	0.8 ± 0.1
ĺ	Total Bkg.	429 ± 27	134 ± 13	1.8 ± 0.4
ĺ	Obs.	427	145	1

$H \rightarrow WW \rightarrow l\nu l\nu$: results

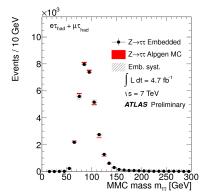
- Fit transverse mass distribution
- SM Higgs boson is excluded in the range 130-260 GeV at the 95% confidence level

Stat only errors:	0-jet	1-jet	2-jet	
$m_H = 125 \; GeV$	37.7 ± 0.2	9.4 ± 0.1	0.8 ± 0.1	
Total Bkg.	429 ± 27	134 ± 13	1.8 ± 0.4	
Obs.	427	145	1	

$H \rightarrow \tau \tau$: analysis strategy

- Directly tests Higgs couplings to leptons
- Collinearity of boosted tau decay products allows mass reconstruction

$$H \rightarrow \tau \tau \rightarrow II + 4\nu$$
 (12%)

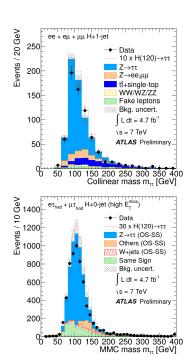

- $ho_{T,\mu} > 10 \; GeV, \; p_{T,e} > 15 \; GeV$
- $ightharpoonup e\mu$ only, 0-jet, 1-jet, 2-jet VH, 2-jet VBF
- Collinear mass approximation

$$H \rightarrow \tau \tau \rightarrow I \tau_{had} + 3 \nu$$
 (46%)

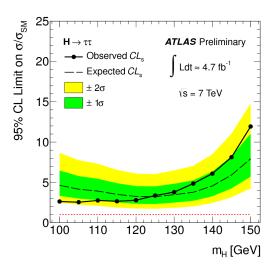
- $p_{T,\mu} > 20 \text{ GeV}, p_{T,e} > 25 \text{ GeV}, p_{T,\tau} > 20 \text{ GeV}$
- ▶ 0-jet (4), 1-jet (2) and 2-jet VBF
- Missing mass calculator NIM A654 (2011) 481

$$H \rightarrow \tau \tau \rightarrow \tau_{had} \tau_{had} + 2\nu$$
 (42%)

- ▶ $p_{T,\tau} > 35 \text{ GeV}, p_{T,\tau} > 25 \text{ GeV}$
- ▶ 1 category: $p_{T,jet} > 40 \text{ GeV}$, $E_{T,miss} > 40 \text{ GeV}$
- Collinear mass approximation



 $Z \rightarrow \tau \tau$:


Normalized from theory and modeled from data using taus embedded in $Z \rightarrow \mu\mu$ data (6-10% uncertainty)

Fake leptons and tau-jets:

 $II + 4\nu$: reverse lepton isolation (30-40%) $I\tau_{had} + 3\nu$: same sign events (20%) $\tau\tau_{had} + 2\nu$: fit N_{track}^{jet} distribution (20%)

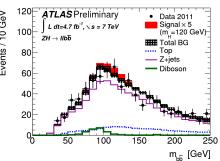
$H \rightarrow \tau \tau$: results

- ▶ Fit $m_{\tau\tau}$ distribution in 12 channels
- Observed limits are 2.5 to 11.9 times the SM prediction

$VH \rightarrow Vbb$: analysis strategy

- ▶ Directly tests Higgs couplings to quarks
- W/Z associated production to suppress QCD backgrounds
- ▶ W/Z and Higgs recoil with significant pt

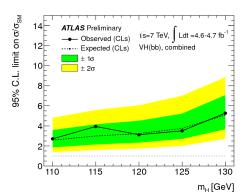
$ZH \rightarrow IIbb$:

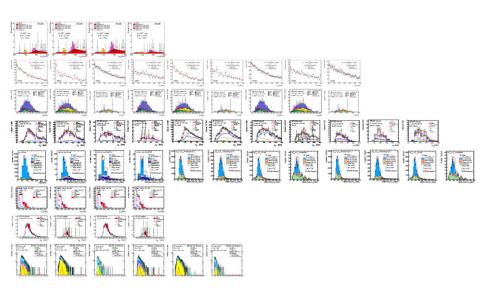

- $ightharpoonup p_T^Z$: < 50, (50, 100), (100, 200), > 200 GeV
- $p_T^I > 20 \text{ GeV}, E_{T,miss} < 50 \text{ GeV}, 83 \text{ GeV} < m_{II} < 99 \text{ GeV}$

$WH \rightarrow l\nu bb + 0$ -jet:

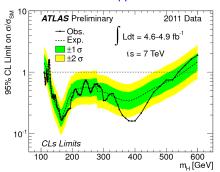
- $ightharpoonup p_T^W$: < 50, (50, 100), (100, 200), > 200 GeV
- $ho_{T,lep} > 25~GeV$, $E_{T,miss} > 25~GeV$, $m_T > 40~GeV$

$ZH \rightarrow \nu \nu bb + 0$ -jet:

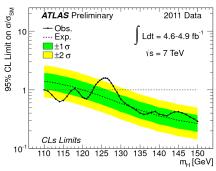

- ightharpoonup $E_{T,miss}$: (120, 160), (160, 200), > 200 GeV
- ▶ Missing charged particle momentum: p_{T,miss} > 30 GeV


$VH \rightarrow Vbb$: results

- ▶ W/Z+jet shape taken from simulation and normalized from W/Z+2jet (1 b-jet) and mbb sidebands
- ► Top shape taken from simulation and normalized to 2 bjet region and m_{bb} sidebands
- ► *IIbb* and *Ivbb*: multi-jets normalized from region with reversed lepton ID
- ightharpoonup
 u
 u bb: multi-jets normalized using $\Delta \phi(E_T^{miss}, p_T^{miss})$ and $\Delta \phi(E_T^{miss}, b$ -jet)


Bin	$ZH \rightarrow \ell^+\ell^-b\bar{b}$				$WH \rightarrow \ell \nu b \bar{b}$			$ZH \rightarrow \nu \bar{\nu} b \bar{b}$			
	$p_{\mathrm{T}}^{Z}[\mathrm{GeV}]$				$p_{\mathrm{T}}^{W}[\mathrm{GeV}]$			$E_{\mathrm{T}}^{\mathrm{miss}}[\mathrm{GeV}]$			
	0-50	50-100	100-200	>200	0-50	50-100	100-200	>200	120-160	160-200	>200
Number of events for $80 < m_{b\bar{b}} < 150$ [GeV]											
Data	139	164	62	13	622	597	276	15	103	22	24
Signal	1.4 ± 0.2	2.0 ± 0.3	1.7 ± 0.3	0.4 ± 0.1	4.7 ± 0.9	5.2 ± 1.0	4.1 ± 0.9	1.4 ± 0.3	2.3 ± 0.5	1.3 ± 0.3	1.8 ± 0.5
Top	18	25	7	0	260	383	219	8.6	42	9	4
W+jets	-	-	-	-	285	181	72	12	13	7	4
Z+jets	132	126	58	5.6	0.4	0.3	0.1	0.0	33	12	7
Diboson	8	6	4	1	13	13	8	1	5	5	4
Multijet	-	-	-	-	64	42	4	1	1.2	0.2	0.4
Total Bkg	157 ± 15	157 ± 11	70 ± 7	6 ± 2	625 ± 36	620 ± 24	303 ± 13	23 ± 4	94 ± 10	33 ± 5	20 ± 5

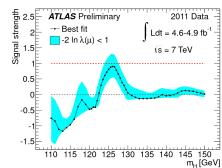
SM Higgs combination



SM Higgs combination

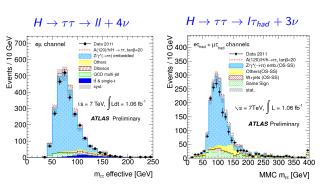
Combined upper limits

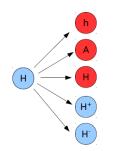
Zoom at the low mass

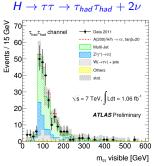

- SM Higgs boson is excluded in the ranges: 110-117.5, 118.5-122.5, 129-539 GeV at the 95% CL
- ► The combination includes additional channels: $H \rightarrow WW \rightarrow l\nu qq$, $H \rightarrow ZZ \rightarrow llqq$

SM Higgs combination

Background-only probability

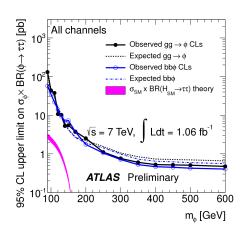

Best-fit signal strength $\mu = \sigma/\sigma_{\it SM}$

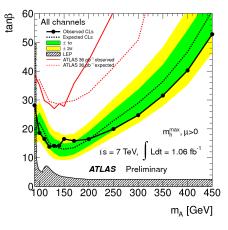



- An excess of events at $m_H \approx 126.5$ with a local significance 2.5 σ Expected significance for SM Higgs 2.9 σ Best-fit signal strength $\mu = 0.9 + 0.4 0.3$
- ▶ Global probability for such background fluctuation: $\approx 30\%$ in the range 110-600 GeV $\approx 10\%$ in the range 110-146 GeV

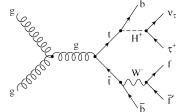
MSSM $H \rightarrow \tau \tau$

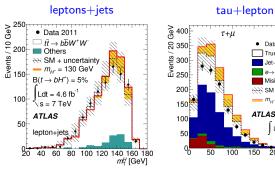
- Higgs sector in MSSM contains 3 neutral scalars and 2 charged scalars
- ▶ Decays to WW and ZZ can be suppressed or absent
- ► Decays to third generation fermions are enhanced for large regions of MSSM parameter space
- ► Selections and background estimation procedures are similar to SM $H \rightarrow \tau \tau$ searches
- $\int \mathcal{L} = 1.06 \ fb^{-1} \ ATLAS-CONF-2011-132$

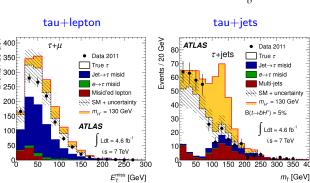




MSSM $H \rightarrow \tau \tau$: results

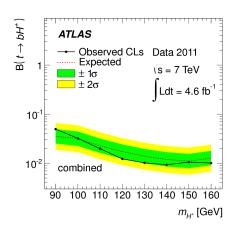

- ▶ Set limits on a production rate of a heavy neutral scalar decaying to taus
- Complimentary approach to dedicated SUSY searches

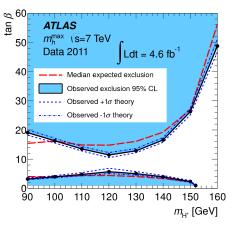


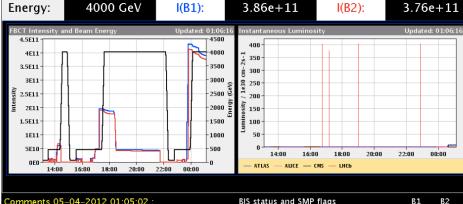


MSSM $H+ \rightarrow \tau \tau$

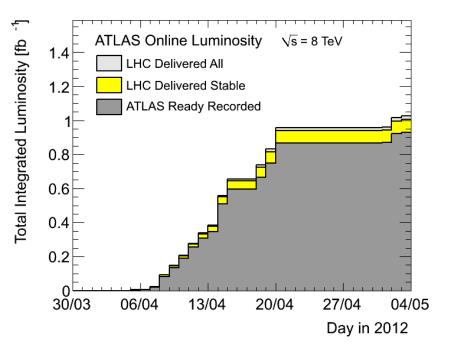
- ▶ 90 $GeV < m_H < 160 GeV$: charged Higgs is produced in top pair decays
- Search for heavy charged particle decaying to taus in association with bjets
- $ightharpoonup \int \mathcal{L} = 4.7 \ fb^{-1} \ ATLAS-CONF-2012-011$





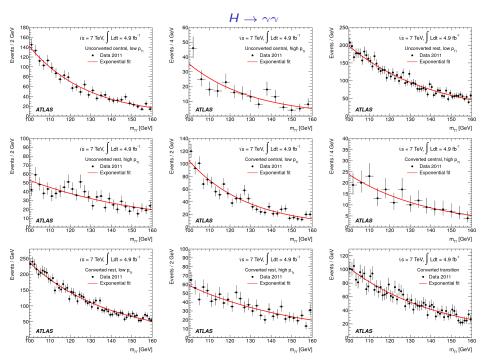

MSSM $H+ \rightarrow \tau\tau$: results

- ▶ Set limits on the branching ratio for $t \rightarrow bH^+$
- Complimentary approach to dedicated SUSY searches

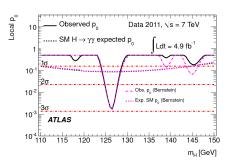


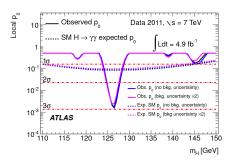
PROTON PHYSICS: STABLE BEAMS

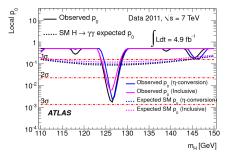
Comments 05-04-2012 01:05:02 :	BIS status and	SMP flags		В1	В2
(optimizations done)	Link Stat	us of Beam P	ermits	true	true
first stable beams of 2012!	Glob	Global Beam Permit			true
	2	Setup Beam		false	false
	Ве	Beam Presence			true
	Moveable	Moveable Devices Allowed In			true
	St	Stable Beams			true
AFS: Single 3b 2 2 2	PM Status B1	ENABLED	PM Status B	2 E1	NABLED

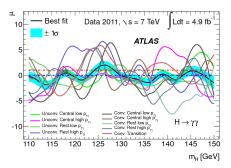


Conclusions and outlook

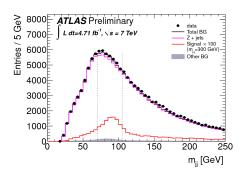

Congratulations to CERN for the fantastic LHC performance!

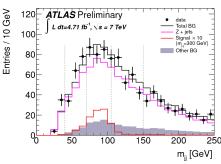

- ► ATLAS released SM Higgs boson searches in 12 distinct channels using full 2011 dataset
- ► Allowed Higgs mass is the ranges 117.5-118.5 GeV and 122.5-129 GeV at the 95% CL
- ▶ Observed an excess of events consistent with $m_H \approx 126.5$ GeV
- ▶ This year we will know if this is the SM Higgs boson!

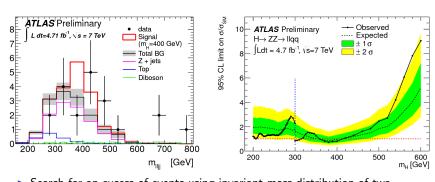




 $H \rightarrow \gamma \gamma$

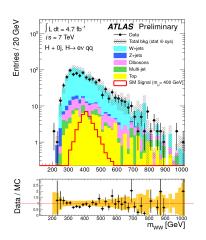


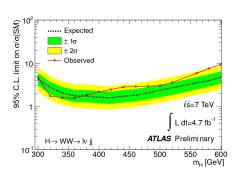




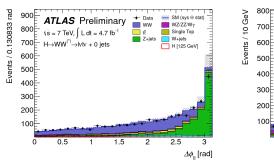
$H \rightarrow ZZ \rightarrow Ilqq$

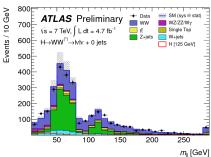
- ▶ Pair of isolated electrons or muons ($p_T > 20$ GeV) consistent with Z decay
- ▶ Two central jets from the same vertex as leptons
- Separate light jets and b-jets to improve signal sensitivity
- ightharpoonup Z+jet and $t\bar{t}$ background shapes taken from MC and checked with data
- ightharpoonup Z+jet and $t\bar{t}$ normalizations taken from sidebands

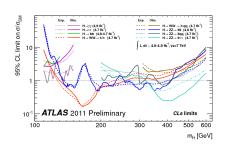


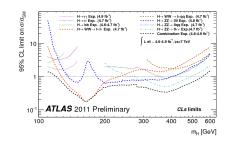


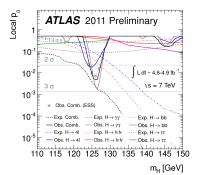
- Search for an excess of events using invariant mass distribution of two leptons and two jets
- ▶ Split the analysis at $m_H = 300 \text{ GeV}$
- SM Higgs boson is excluded in the ranges 300-310 GeV and 360-400 GeV at the 95% confidence level

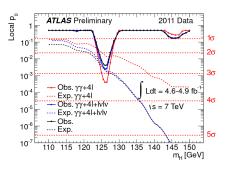

$H \rightarrow WW \rightarrow I\nu qq$


- **Exactly** one isolated electron or muon with $p_T > 40$ GeV
- ► Two central jets consistent with W decay
- Separate events by multiplicity of additional jets (ggF vs VBF)
- ▶ Search for an excess in event invariant mass distribution
- SM backgrounds are fitted from sidebands
- Approaching SM Higgs sensitivity

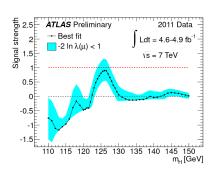

$H \rightarrow WW \rightarrow l\nu l\nu$: topological selections

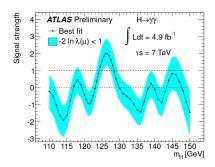


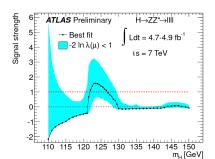


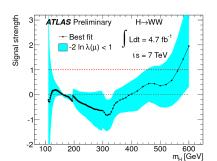

- Require small opening between two leptons for low mass Higgs
- Apply di-lepton invariant mass cut for low mass Higgs

Combination









Combination

