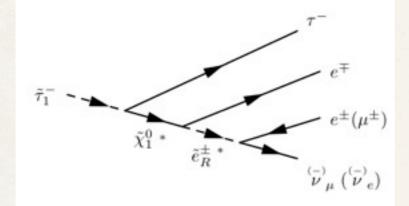
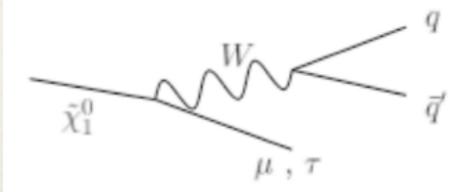
ATLAS *R*-Parity Violating SUSY Searches

Dan Pomeroy Brandeis University

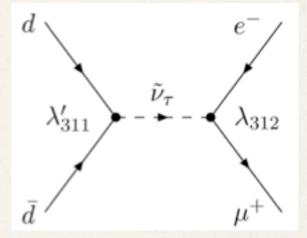


03-05-12

Outline


Multilepton Search

Generic analysis sensitive to many SUSY models


Single Lepton Search

Bi-linear RPV

<u>e µ Resonance Search</u>

Neutral sneutrino decaying to e μ pair

<u>e µ Continuum Search</u>

LFV t-channel exchange of scalar quark $d \rightarrow \lambda'_{131} \rightarrow e^{-t}$ \bar{t} $\bar{d} \rightarrow \lambda'_{231} \rightarrow \mu^{+}$

Multilepton Search

- "Constraining R-parity violating Minimal Supergravity with stau1 LSP in a four lepton final state with missing transverse momentum."
 - * <u>ATLAS-CONF-2012-035</u>
- mSUGRA/CMSSM model with R-parity violation described by 6 parameters
 - * $m_0, m_{1/2}, A_0, \tan \beta, \operatorname{sign}(\mu), \lambda_{121}$

	Mass [GeV]	Channel	BR	Channel	BR			
$\tilde{\tau}_1$	148	$\tau^- \mu^\pm e^\mp \overset{(-)}{\nu}_e$	50.1%	$ au^- e^\pm e^\mp \stackrel{\scriptscriptstyle(-)}{ u}_\mu$	49.9%			
\tilde{e}_{F}	161	$e^- v_\mu$	50.0%	$\mu^- \nu_e$	50.0%			
\tilde{e}_{F} $\tilde{\mu}_{\mathrm{F}}$ $\tilde{\chi}_{\mathrm{F}}$	a 161	$ ilde{ au}_1^{\pm} au^{\mp}\mu^{-}$	99.9%					
$\tilde{\chi}_1^0$	1 162	$\tilde{\tau}_1^{\pm} \tau^{\mp}$	99.6%					
	BC1 Scenario							
	$m_0 = A_0 = 0, \ \mu > 0, \ \lambda_{121} = 0.032$							
	Limits are set in tan β vs m _{1/2} plane							
	$ \begin{array}{c} \text{mSUGRA/CMSSM, } m_0 = A_0 = 0 \text{ GeV}, \mu > 0, \ \lambda_{121} = 0.032 \text{ at } m_{\text{GUT}} \\ \hline \\ \text{atlass} \\ \text{Feliminary} \\ \hline \\ \text{50} \\ \hline \\ \text{Theoretically excluded} \\ \end{array} $							
40								
	30	m _{ī,}						

 $\overset{(-)}{\nu}_{\mu} \begin{pmatrix} \overset{(-)}{\nu}_{e} \end{pmatrix}$

 $\tilde{\chi}^0_1 *$

Previous excluded regions of phase space

800

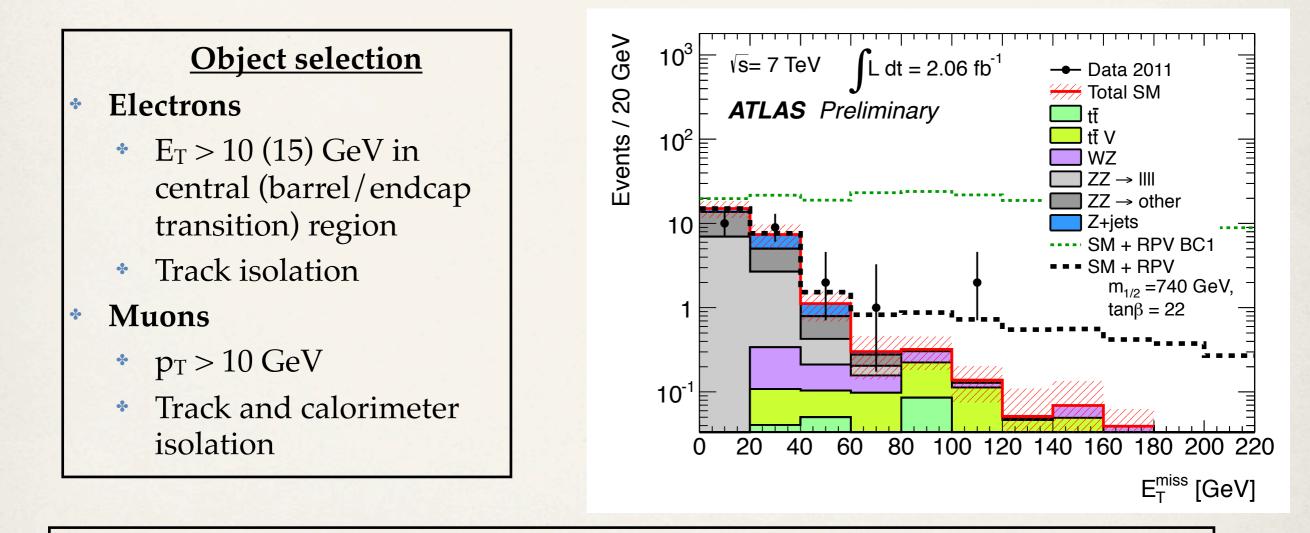
1000

600

400

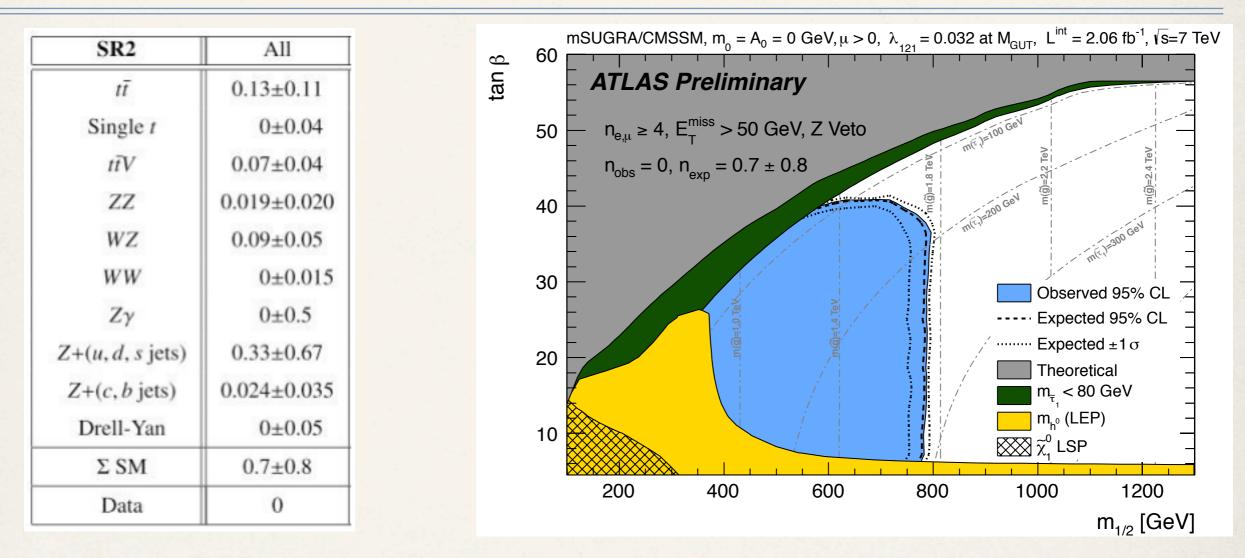
20

10


200

1200

m_{1/2} [GeV]


Event Selection

Analysis based on 2.06 fb⁻¹ of data using single lepton triggers

Signal Region 1: At least 4 leptons with $E_T^{Miss} > 50 \text{ GeV}$ Signal Region 2: SR1 + $|m_{ll} - m_Z| < 10 \text{ GeV}$ for each l^+l^- pair

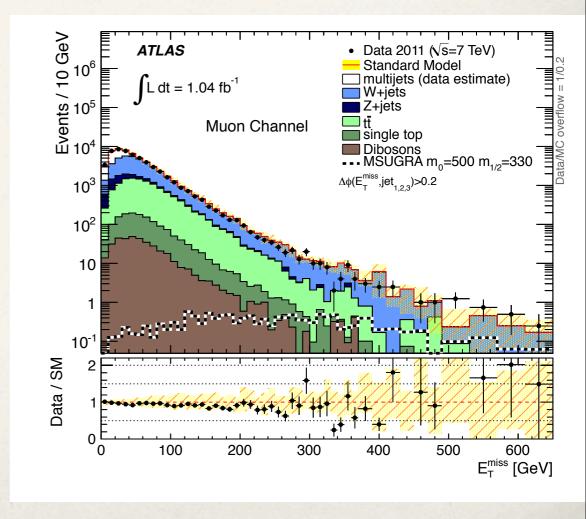
Results

No excess observed

- * Use SR2 to set limits with profile likelihood procedure
- * For tan $\beta < 40$, m_{1/2} is excluded below 800 GeV \Rightarrow Gluino mass excluded below 1770 GeV

Single Lepton Search

- $\tilde{\chi}^0_1$ $\overset{W}{\underset{\mu, \tau}{\longrightarrow}}$ $\overset{q}{\vec{q}'}$
- "Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in sqrt{s} = 7 TeV pp collisions using 1 fb⁻¹ of ATLAS data."
 - * Phys. Rev. D 85 012006 (2012)
- mSUGRA/CMSSM with bilinear RPV
 - Non-vanishing vacuum expectation value for sneutrinos induces mixing between sneutrino and neutrino
 - Possible explanation for neutrino mass / mixing
 - Long cascade decay, but with neutralino decaying

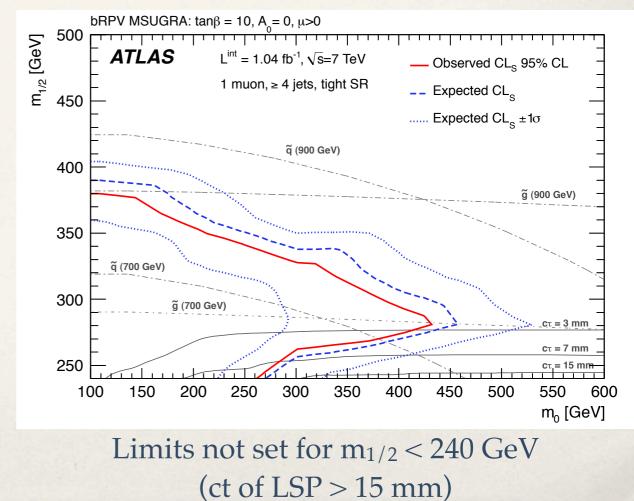


Event Selection

- * Reinterprets single lepton analysis optimized for RPC using **1.04 fb⁻¹** of data
- Common event selection
 - Exactly 1 isolated muon with p_T > 20 GeV
 - * Veto events with any electrons with $p_T > 20$ GeV to avoid overlap with other analyses
 - * E_T^{Miss} separated from jets with $\Delta \phi > 0.2$

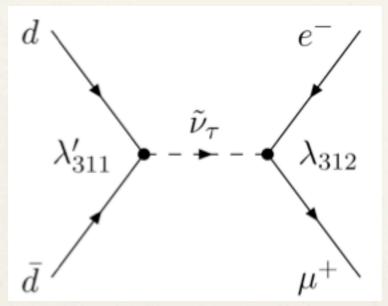
Four signal and two control regions are defined

	Signal Regions			Control Regions		
Selection	3JL	3JT	4JL	4JT	3J	4J
Number of Leptons	= 1					
Lepton $p_{\rm T}$ (GeV)		> 25(20) for electrons (muons)> 20(10) for electrons (muons)				
Veto lepton $p_{\rm T}$ (GeV)						
Number of jets	≥	3	≥	4	≥ 3	≥ 4
Leading jet $p_{\rm T}$ (GeV)	60	80	60	60	60	60
Subsequent jets $p_{\rm T}$ (GeV)	25	25	25	40	25	25
$\Delta \phi(j\vec{et}_i, \vec{E}_T^{miss})$	$[> 0.2 \pmod{\pi}]$ for all 3 (4) jets					
$m_{\rm T}~({\rm GeV})$	> 100				$40 < m_{\rm T} < 80$	
$E_{\rm T}^{\rm miss}~({\rm GeV})$	> 125	> 240	> 140	> 200	$30 < E_{2}^{1}$	$\frac{\text{miss}}{\Gamma} < 80$
$E_{\rm T}^{\rm miss}/m_{\rm eff}$	> 0.25	> 0.15	> 0.30	> 0.15	_	-
$m_{\rm eff}~({\rm GeV})$	> 500	> 600	> 300	> 500	> 500	> 300
3(4)				3(4)		
$= \sqrt{2 \cdot p_{\mathrm{T}}^\ell \cdot E_{\mathrm{T}}^{\mathrm{miss}} \cdot (1 - \cos(\Delta \phi(ec{\ell}, ec{E}_{\mathrm{T}}^{\mathrm{miss}})))} m_{\mathrm{eff}} = p_{\mathrm{T}}^\ell + \sum p_{\mathrm{T}}^{\mathrm{jet}_i} \cdot p_{\mathrm{T}}^{\mathrm{jet}_i}$				$\sum p_{\mathrm{T}}^{\mathrm{jet}_i}$ +		
					1	i=1

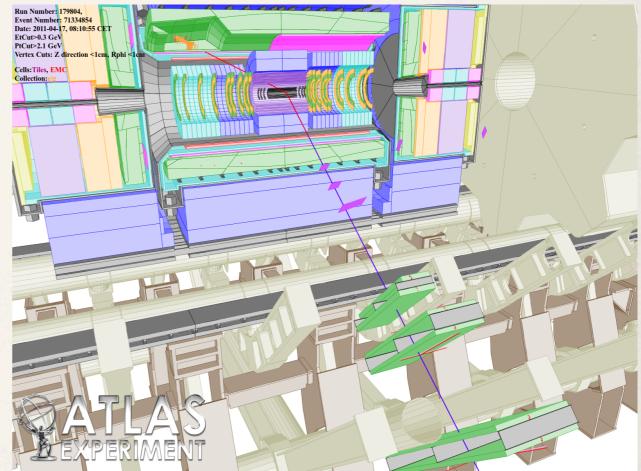

 $m_{
m T}$

Background and Results

- * MC simulation prediction of backgrounds in signal regions validated in control regions
- Multijet background estimated from data
- Final determination of background done through simultaneous likelihood fit of control regions to account for cross contamination
- Systematic uncertainties dominated by theoretical uncertainties (20 30%)

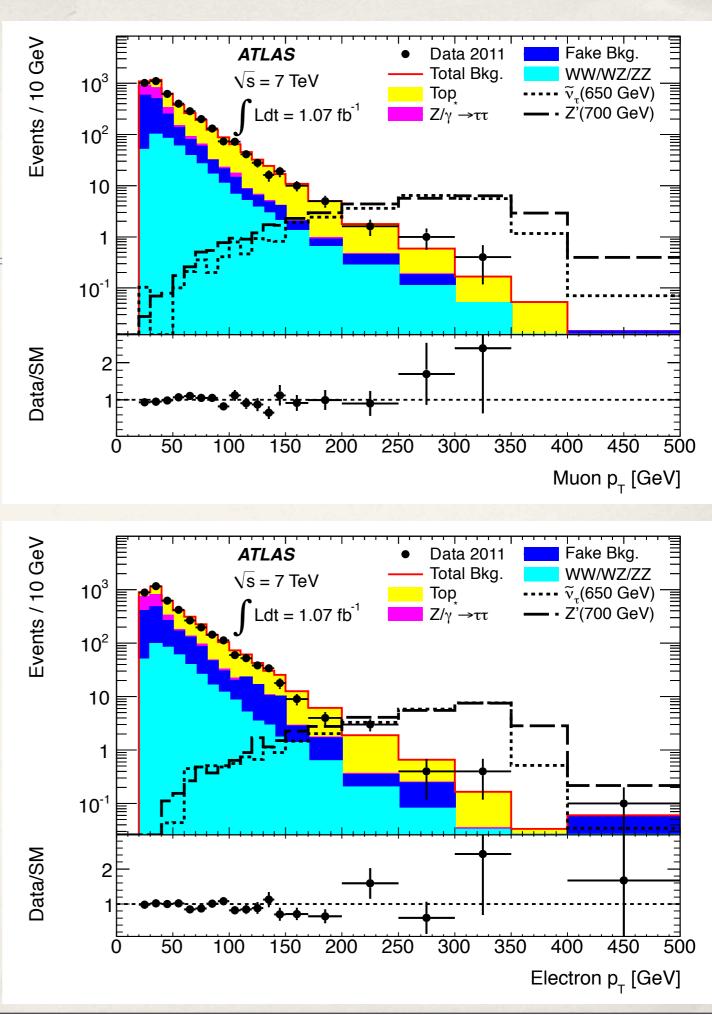

Muon channel			
Signal region	Observed	Fitted background	
3JL	58	64 ± 19	
3JT	11	13.9 ± 4.3	
4JL	50	53 ± 16	
4JT	7	6.0 ± 2.7	

No excess observed \Rightarrow set limits in the 4JT SR for mSUGRA bRPV



e µ Resonance Search

- "Search for a heavy neutral particle decaying into an electron and a muon using 1 fb–1 of ATLAS data"
 - * Eur. Phys. J. C 71, 1809 (2011)
- Clean detector signature and small SM background


Search also sensitive to LFV Z'

Event display of highest invariant mass e μ pair

Event Selection

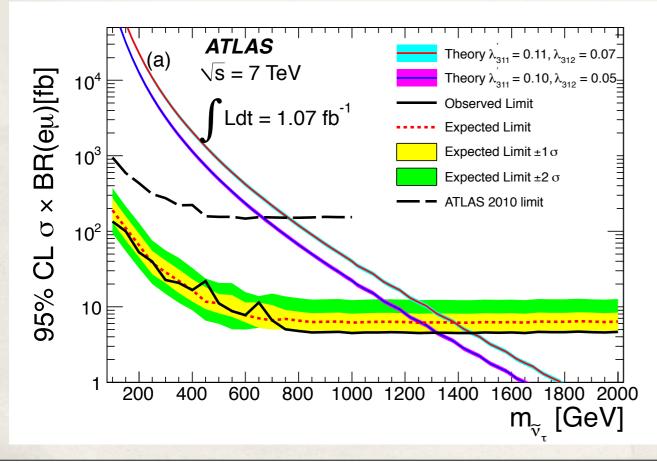
- * Analysis based on **1.04 fb⁻¹** of data
- * Passes single lepton (e or μ) trigger
 - Efficiency 100%
- At least one primary vertex with at least 3 tracks whose pT > 500 MeV
- * Require exactly 1 e and 1 μ with:
 - Opposite charge
 - pT > 25 GeV
 - η within fiducial region of the detector
 - Isolated

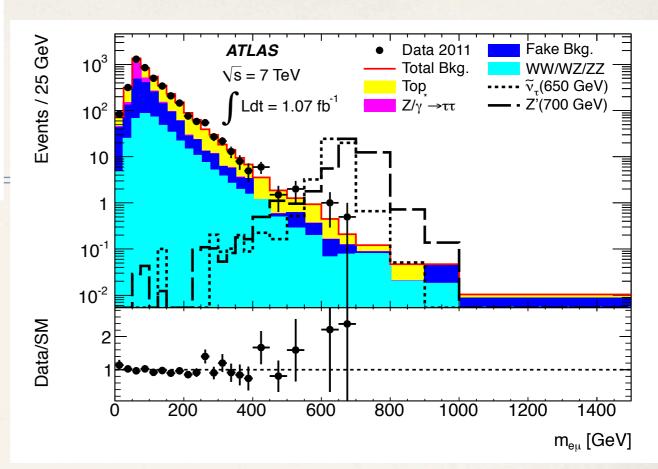
Backgrounds and Systematics

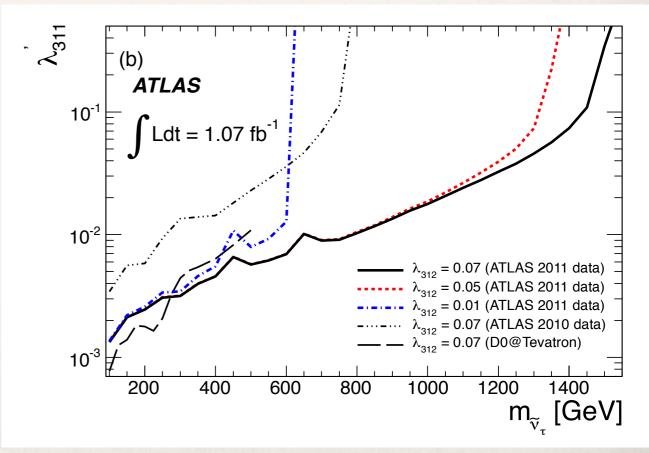
- **Physics Backgrounds**
 - * Drell Yan $(Z/\gamma^* \rightarrow \tau\tau)$
 - * tŦ
 - Single Top (Wt)
 - Diboson (WW, ZZ, WZ)
- Fake Background

- All physics backgrounds modeled with Monte Carlo simulation
 - Lepton identification efficiencies, * energy scales and resolutions are corrected to match data
- QCD and W/Z + jets are estimated using * a data driven method

* $W/Z + \gamma$ modeled with MC

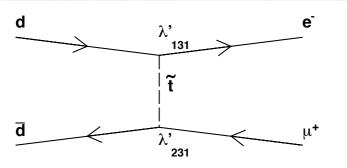

 Multijet 	Source	Fractional uncertainty (%)	Relations with backgrounds	Relation with signal
	Luminosity	3.7%	related to all bkg samples	related
· TAT / - · ·	Trigger efficiency	1%	related to all bkg samples	related
* W/Z + jets	Electron reco and ID efficiency	2%	related to all bkg samples	related
,	Muon reco and ID efficiency	1%	related to all bkg samples	related
= TAT/7 + AT	$Z/\gamma^* \rightarrow \tau \tau$ cross section	5%	related to $Z/\gamma^* \to \tau \tau$ sample	unrelated
* $W/Z + \gamma$	ZZ cross section	5%	related to ZZ sample	unrelated
	WW cross section	7%	related to WW sample	unrelated
	WZ cross section	7%	related to WZ sample	unrelated
	$t\bar{t}$ cross section	10%	related to $t\bar{t}$ sample	unrelated
	Wt cross section	9%	related to Wt sample	unrelated
	$W\gamma$ cross section	10%	related to $W\gamma$ sample	unrelated
	$Z\gamma$ cross section	10%	related to $Z\gamma$ sample	unrelated


Results


Process	Number of events
$t\overline{t}$	1580 ± 170
Jet fake	1180 ± 120
$Z/\gamma^* \rightarrow \tau \tau$	750 ± 60
WW	380 ± 31
Single top	154 ± 16
$W/Z + \gamma$	82 ± 13
WZ	22.4 ± 2.3
ZZ	2.48 ± 0.26
Total background	4150 ± 250
Data	4053

- * SM prediction agrees with data
- Limits are set on cross section times branching ratio and coupling as a function of snuetrino mass

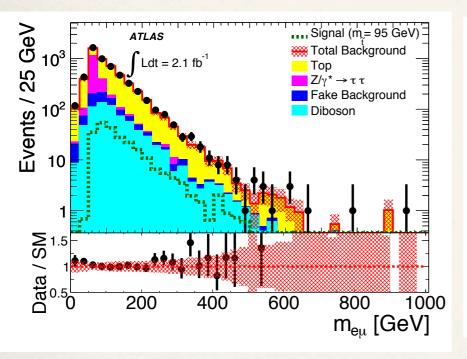
Using Bayesian analysis with flat prior



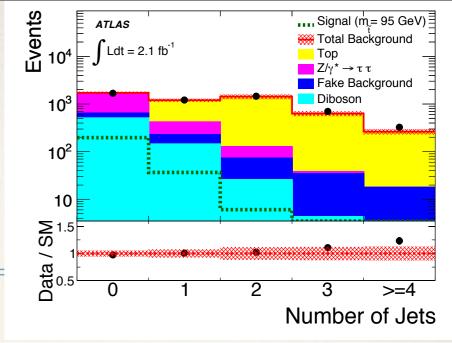
e µ Continuum Search

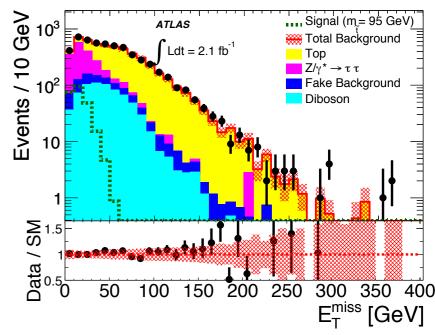
 An RPV Superpotential can also produce LFV t-channel exchange

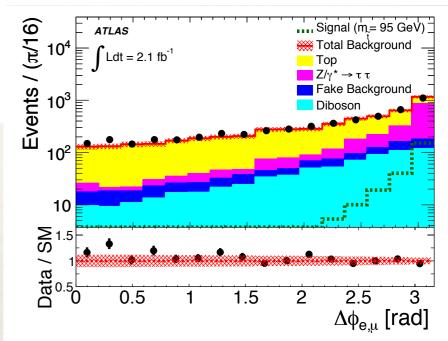
Differential cross section:


$$\frac{d\sigma}{dt} = \frac{|\lambda'_{131}\lambda'_{231}|^2 \hat{t}^2}{64N_c\pi\hat{s}^2 \left(\hat{t} - m_{\tilde{t}}^2\right)^2}$$

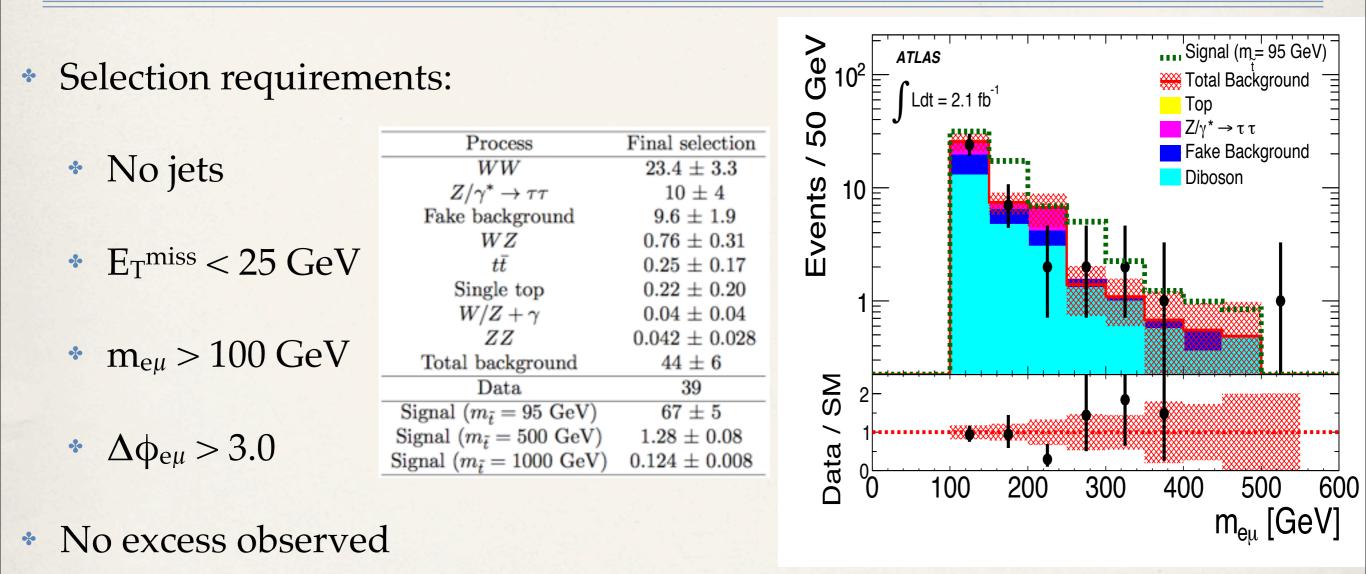
- Dominated by the lightest up-like squark
- * Also diagrams with the d/\overline{d} independently replaced by s/\overline{s}
 - Cross section has same form but involves different couplings


- Analysis assumptions:
 - Scalar top is the lightest up-like squark
 - Current limit ~95 GeV
 - * $|\lambda'_{131}\lambda'_{231}| = |\lambda'_{132}\lambda'_{232}| = 0.05$
 - All other couplings negligible
- * t-channel exchange
 - No peak in invariant mass spectrum


Event Preselection

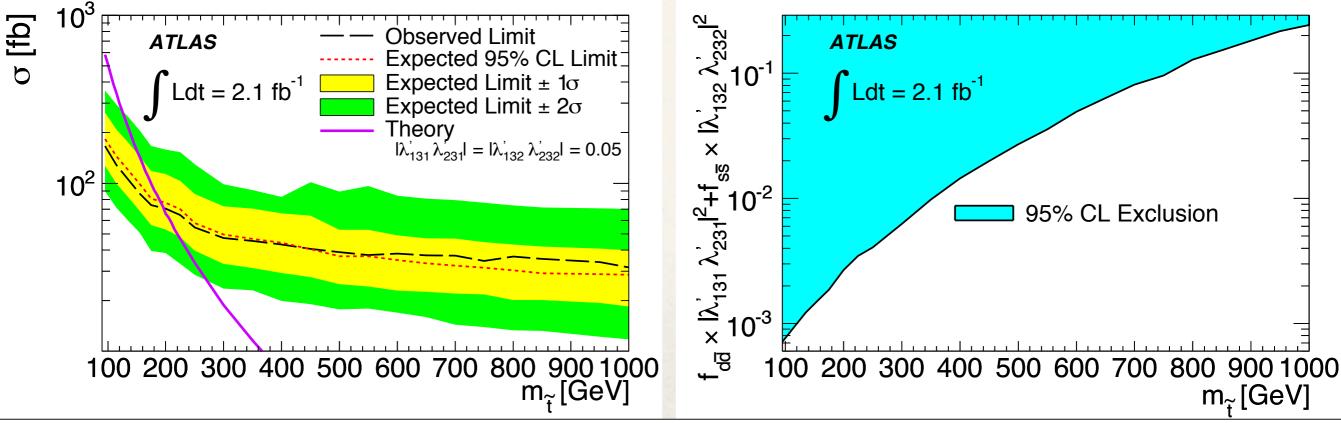

- Analysis based on 2.08 fb⁻¹
- * Same e and μ definition as resonance search
 - Except tighter isolation requirements

Process	Number of events
$t\overline{t}$	1580 ± 170
Jet fake	1180 ± 120
$Z/\gamma^* \rightarrow \tau \tau$	750 ± 60
WW	380 ± 31
Single top	154 ± 16
$W/Z + \gamma$	82 ± 13
WZ	22.4 ± 2.3
ZZ	2.48 ± 0.26
Total background	4150 ± 250
Data	4053



- Analysis uses 3 additional variables to separate signal from background:
 - Missing transverse energy, jet multiplicity, and angular separation

Final Selection

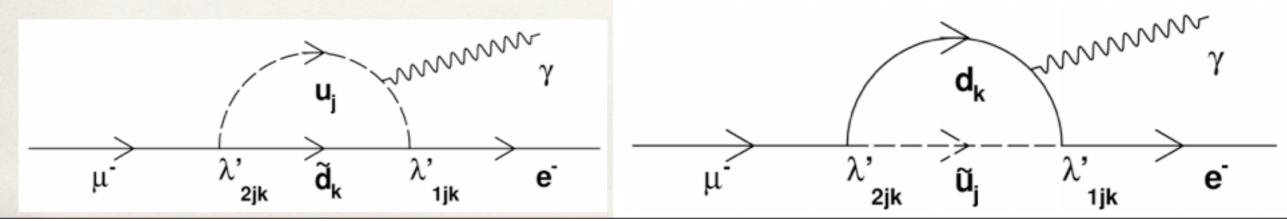


 Limits set with CLs method, using m_{eµ} distribution and a binned likelihood ratio test statistic to take shape into account

Limits and Systematics

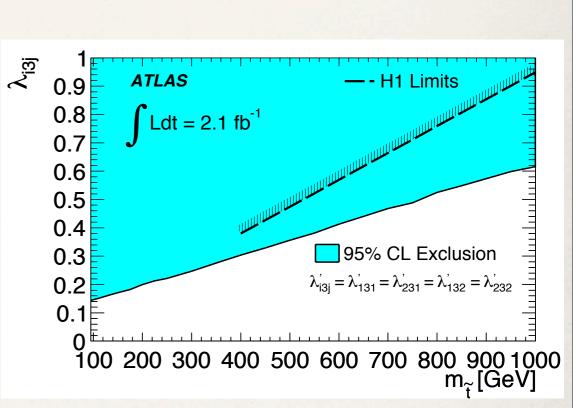
- Limits set on production cross section as a function of scalar top mass
- Two-dimensional limits also placed in the plane of the PDF weighted sum of couplings vs scalar top mass

Source	Fractional Uncertainty	Applicable To
Luminosity	3.7%	Signal + All Background
Trigger	1%	Signal + All Background
Electron reco and ID efficiency	2%	Signal + MC Background
Muon reco and ID efficiency	1%	Signal + MC Background
Jet energy scale	3.6%	Signal + MC Background
Electron energy smearing	0.9%	Signal + MC Background
Muon momentum smearing	0.3%	Signal + MC Background
Theoretical cross section	5% - 10%	MC Background Only
MET Uncertainty	12.0%	MC Background Only
Data driven background	15.0%	Instrumental Only

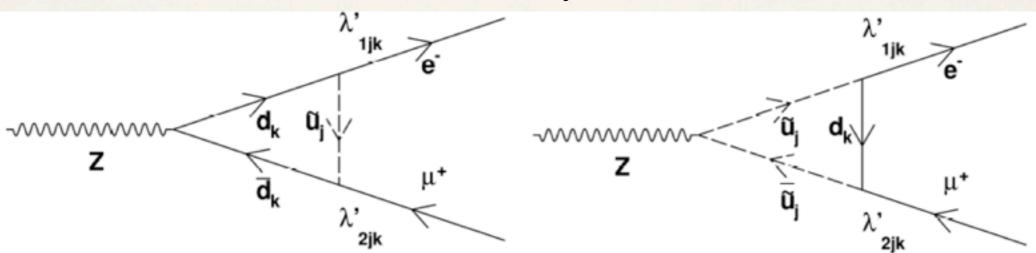

Summary and Conclusion

- * Four searches for R-parity violating SUSY with ATLAS presented in this talk
 - 1. Searches for bRPV in a one lepton analysis
 - 2. Searches for Stau LSP decays in the CMSSM in a four lepton analysis
 - 3. Searches for resonant production of a Sneutrino decaying into eµ pairs
 - 4. Searches for continuum production of $e\mu$ pairs through a t-channel exchange of a scalar quark
- * No deviations from SM expectations found
 - Limits set on a variety of SUSY parameter space
- * RPV Susy introduces 48 new terms in addition to MSSM
 - Many more searches to be performed!

Backup Slides


Limits from $\mu \rightarrow e \gamma$

- To derive the limit |λ'23k'λ*13k|<0.002, the intermediate states are assumed to be d-scalar top and t-scalar down, and m_(scalar d)=300 GeV
- * If SUSY is right, m(scalar d) are likely higher than 300 GeV
 - * In general, once the squark mass > top mass, the limits weaken as the squark mass is increased
- Destructive interference between different quark-squark states are likely to exist given similar amplitude of masses and couplings which is ignored in the above limit setting
- * Effects from other intermediate states are ignored
- * These effects are not likely to reduce the limits by several orders of magnitude, but a reduction of one or two orders of magnitude is possible, which will be close to the region where our search can be sensitive


Limits from Leptoquarks

- Similar limits can be extracted from high energy searches at HERA
- The process ep → µX is assumed to be mediated by a LFV leptoquark
- Below HERA center of mass (~300 GeV), where s-channel production is allowed, stringent limits are placed
 - These limits depend on assumptions of branching ratios
- At high mass, where limits depend on u-channel exchange, limits are comparable to results achieved here

Limits from $Z \rightarrow e\mu$

- * The limit from $Z \rightarrow e\mu$ is $|\lambda' 23k'\lambda^* 13k| < 0.065$ from table 2, R. Barbier et al. Phys. Rep. 420, 1 (2005)
- Some Feynman diagrams shown below
- * Other Feynman diagrams exist with leptons and sleptons in the intermediate state
- Similar situations with e limits: assuming specific squark masses and couplings, dominance of one particular couplings and ignore destructive interference effects
- Limits obtained are close to our sensitivity

