How well do we understand NIR detectors? (focus on hybrid HgCdTe)

Roger Smith

Caltech

2018-12-03

Photodiodes, with low bandgap

Figure 2: View of a field of indium micro-bumps with a pitch of 15 μm

- Bump bond low bandgap material to silicon readout IC.
- Integrate charge on diode capacitance.

Basic theory of PN junction

Roger Smith et al., Caltech

http://en.wikipedia.org/wiki/P-n_junction

SPIE 7021-22, Marseille 2008-06-24

When majority carriers diffuse across PN junction they recombine leaving a charged but carrier free region. The charge on the donor atoms produces an E field which opposes further diffusion.

For given donor density profile, Q(x) at equilibrium, within space-charge region:

Built in voltage

Roger Smith et al., Caltech

Reverse bias

SPIE 7021-22, Marseille 2008-06-24

At "reset", a reverse bias is applied : charge is removed, increasing depletion width.

Photon makes electron hole pair

E field separates e-h \Rightarrow voltage drops

Charge accumulates during exposure

SPIE 7021-22, Marseille 2008-06-24

 Saturation = forward bias occurs when depletion region collapses

PN junctions on common substrate

PN junctions on common substrate

Inter-Pixel Capacitance

Roger Smith et al., Caltech

See Kevan Donlon's talk

IPC dependent on detector bias ??

Roger Smith et al., Caltech

Pixel boundaries after reset

Roger Smith et al., Caltech

Signal contrast moves boundary

Roger Smith et al., Caltech

SPIE 7021-22, Marseille 2008-06-24

Pixel shrinks as charge accumulates so PSF seems to grow.

Reset

Roger Smith et al., Caltech

Charge release \Rightarrow Signal in later frames

Roger Smith et al., Caltech

MBE HgCdTe Dark current

Dark current floor

- Dark current is high after turn-on due to de-trapping.
- Floor continues to drop for weeks if dark and stable.
- De-trapping is less noisy than equivalent photo-generated signal → our noise model may be wrong at low enough temperatures for de-trapping to dominate dark current.

Pixel circuit

Correlated Double Sampling

- Exposure delay = p dummy reads for constant self heating
- Subtract first frame from last frame
- Equivalent to Fowler sampling with m = 1

Fowler sampling, ... same dissipation

NIR wavefront sensing

DfA Garching 2009-10-13

- Exposure delay is in units of full scan ties but need not be multiple of m.
- Subtract mean of first group from mean of last group.

Sample Up The Ramp ... same dissipation

NIR wavefront sensing

DfA Garching 2009-10-13

- Store every scan (no real time coadd)
- Use post facto least squares fit to measure slope with best S/N;
- Effective exposure duty cycle due to weighting of shot noise by least squares ~ 90%; reduce this to include effect of the reset overhead.
- Equivalent MultiAccumulate with m=1.

Pixel circuit, showing caps BiasPower, 3.3V All capacitors are non-linear **BiasGate** 10 kΩ 2.1V V_{o} DSUB ~0.8V ColSelect RowSelect Indium Bump ResetGate 0 - 3.3VVRESET ~0.3V

Pixel circuit, showing caps BiasPower, 3.3V All capacitors are non-linear **BiasGate** 10 kΩ 2.1V V_{o} DSUB ~0.8V ColSelect **RowSelect** Indium Bump See poster by **Tim Greffe Explains Global Reset transient** ResetGate 0 - 3.3VCapacitive coupling of RG → changes diode voltage VRESET \rightarrow trapping charge, even in dark. ~0.3V

Large contact Resistance

Initial signal deficit

Pixel contact resistance ? much larger effect and faster settling than charge trapping

- SUTR data acquired at 100 Hz through a single channel. Several illuminated frames were averaged as were several *matched* darks which have been subtracted.
- The fit was derived using the points marked in cyan to eliminate the area affected by the initial signal deficit.
- The quadratic fit is extremely good except for the large deviation in the first 3s (300 frames).

Signal loss due to charge trapping

Initial signal deficit (AKA burn in)

Engineering grade H2RG (2.3 µm cutoff from Euclid)

1st frame / 4th frame -1 Image persistence Burn in: FLUX4/FLUX1-1. 0.030 0.024 0.018 0.012 0.006 0.000 -0.006 -0.012 -0.018 π, -0.024 -0.030

This suggests that charge trapping is dominant cause of initial signal deficit in some areas of this device.

Read noise

- The *photodiodes* generate more read noise than the ROIC and have much stronger 1/f component, as demonstrated by much lower noise and better reduction by multiple sampling for
 - → Permanent reset (shorting out detector noise)
 - \rightarrow Reference pixels
- Is this due to trapping/detrapping?
- Contact resistance is about the correct magnitude to produce about this much Johnson noise.
 - This is worth investigating since lower contact resistance could improve both dynamics (linearity) and noise.

Linearity

Rarely is this well characterized and corrected

- First, subtract *time-dependent* offsets
 - Self heating (minimize by Constant Cadence Clocking)
 - Electronic drifts (reference pixels help)
 - Reset induced (de)trapping
- Correct for dependence of capacitance on voltage
- Correct for trapping of charge (complicated)
- Correct for photodiode time-constant (contact resistance)

Everything is spatially variable.

To do list

- Characterize contact resistance and its consequences
- Study burn-in and reciprocity failure to see how much comes from contact resistance an how much from trapping.
- Evaluate noise produced by dark current at floor. Hot pixels may be noisier.
- Improve linearity calibration methods and/or fix these odd behaviors which make linearity correction so difficult.