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Astronomical Motivation

= Atmosphere of Exoplanets

= CO, (strong feature at 15 um)
can be used to identify
terrestrial planets

= Possibility for life shown by
. ?_.f6 um 04 indicates abundant
Ife [/l
= QOcean detection in outer solar =
system (ice-plate tectonics on
Europa, H,0O geysers on
Enceladus)

= Accessibility to N-band for
ground based observations
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Figure Source: Kaltenegger 2017
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HgCdTe
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* Hg,_,Cd,Te
= x composition parameter (molar concentration of Cd)
= Tunable energy band-gap

= E;(x,T) = —0.302 + 1.93x — 0.81x“ + 0.832x3 + 5.35 X

107*T(1 — 2x) (Hansen and Schmit 1983)
hc
] Eg — /1_6
= UR infrared detector team along with JPL and Teledyne
Imaging Systems have developed HgCdTe 10 um cut-off
arrays
= NEOCam (Mainzer 2015)

= QOperabilities > 90% at a temperature of 40 K
= Dark Current < 200 e~ /s and well depth > 44 ke~
= Median dark currentat 40 K< 1 e~ /s (Dorn et al. 2018)

= 15 um goal (LW15 arrays)
= 13 um (LW13 arrays) intermediate step
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Characterization

= Capacitance
= Non-Linearity
» Read-Noise
= Operability
= Dark current

= \Well depth
= Focus of this talk
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Dark Current vs. Well Depth

Dark Current vs. Well Depth for HIRG—18369, 150mVbias at 28K

i = High dark

S current pixels

will debias
considerably
i before first read,

- showing smaller

e dark currents

= Inoperable

g 10 nixels can then
ne determined
through the low
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PREVIOUS WORK
(LW13 PHASE)
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= Received four LW13 cut-off detectors

» H1IRG-18367 and 18508 were grown and processed in
the same manner as the 10 um arrays for NEOCam

* H1IRG-18369 and H1RG-18509 were designed to
mitigate guantum tunneling dark currents

i Cut-off _
[I::flt ;Cgir nger Lot-Split | Wavelength 6- IQ()]:L m)
(prm)
18367 3757 | Standard 12.8 14%
18508 3755 | Standard 12.7 13%
18369 3763 | Design 1 12.4 12%
18509 3759 | Design 2 12.6 13%

Cabrera et al. 2019
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Dark Current vs WeII Depth

[ | The majorlty Of i . nt vs. We EEDpthlelRC 18509, 150mVbias at 28K
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Operability Map

* Trap-band quantum
tunneling dark
currents occur when

the arrays have traps

due to defects and
dislocations in the
depletion region

= A mismatch between
the CdZnTe substrate
crystal axes and the
HgCdTe layers
Ccreates Ccross-
hatching pattern

Cabrera et al. 2019
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H1RG-18508 SUTR Curvature

u Idark(150 mV) =
0.44e” /s
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Thermally Generated Currents

= Diffusion Current (Reine et al. 1981)

= Direct band-gap thermally generated
electron-hole pairs

= Generation Recombination (G-R) current
(Sah et al. 1957)

= Trap assisted thermally generated currents
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Tunneling Currents

» Band-to-band tunneling current

= Electrons tunnel from the valence to the
conduction band

» Trap-to-band tunneling current

= Electrons tunnel from the valence to the
conduction band indirectly by using intermediate
traps
= Both are heavily bias dependent
= Sze 1981
= Kinch 1981

= Kinch 2014
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I-T with 250 mV of applied bias I-V at a temperature of 28 K

Temperature [K]
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= Dark current model for pixel in previous slide

b= —7}
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H1RG-18509 SUTR Curvature
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Dark Current []

I-T with 250 mV of applied bias
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= Dark current model for pixel
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I-V at a temperature of 28 K
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LW15 RESULTS
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» Recelved three LW15 arrays

* H1IRG-20302 and 20303 were designed to mitigate
gquantum tunneling dark currents

* H1IRG-20304 was grown and processed in the same
manner as the 10 um arrays for NEOCam

= Tested HIRG-20303

= Cutoff wavelength of 15.5 um
* QE of 83% between 6-12 um
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Dark Current vs WeII Depth

u LoweSt dark . | nt vs. Well De pthf - H1IRG— 2,0303 50mV bias at 23K

=
O

currents at a E
temperature of
23K and 50 mV i
of applied bias
= Median dark
current and well
depth of
6.22¢~ /s and
~18ke™ 5
= 87.6% of pixels
have dark § o
currents < 200
e~ /s and well o L
depth greater e e T B e T
— Well Depth (mV) Fraction of Total Pizels
than ~ 12ke

80] UNIVERSITY«ROCHESTER




Operability Map
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SUTR Curvature

- 25000 ——
u |nCreaS|ng T 5I[)m.1f ' ' ' ' 1100 -_120 1120
I | ] 1120
1 eoe 150mV ] |
bias also | |
. 20000 1100 1100 1
INCreases 1% ] j 1*°
dark current | | Sofhos| =
15000 = = =
—~ i 180 = 4 5 S g
Ii"— ] r ] & 7 &
E - {60 2 Jeo T | %
H - . I & 1% &
10000 140 | % = =
I 1 = = =
- ' 140 S o 5 ], S
5000 : :
_b:‘ | 20 -120 120 420
N ] |
2 ﬁ
0 et Y E I U | | do do do
0 100 200 300 400 500 600

Time (sec)

82 UNIVERSITY~ ROCHESTER




I-T with 150 mV of applied bias I-V at a temperature of 23 K

Temperature K]
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LW15 Array Summary

= From our fits, we have shown that at 250
and 350 mV of applied bias at a
temperature of 23 K, band-to-band
tunneling current is the dominating dark
current component

= At low temperatures and bias, G-R and
trap-to-band appear to dominate dark
current

= TIS improved diode structure to reduce
band-to-band tunneling
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Future Work

= More detailed dark current vs.
temperature and bias characterization to
determine If the majority of pixels behave
similarly as the one presented here

= Characterize two other arrays
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Thank you!
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QUESTIONS?
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