Near IR Sensors and Precision Radial Velocities

Gautam Vasisht (JPL)

Planets present weak signals

- Planet detection stresses capabilities of instruments and their detectors
 - Transits
 - Imaging
 - Astrometry
 - Radial Velocity

There's definitely a planet hiding under this muck

Transits: How well can we do the photometry?

Spectroscopy requires 1 ppm

Earth 2.0 orbiting an M4V star

Werner+2016 (LUVOIR)

Planet Imaging & PSF Reconstruction

Astrometry: measure position of target relative to background stars

Image: E. Bendek

Narrow Angle Astrometry: Sensor Calibration at JPL

Image: I. Hahn, C. Zhai

RV measures reflex velocity of the star

Discovery, mass and orbit characterization of planets. The ultimate prize is to find Earth-mass exoplanets orbiting nearby Sun-like stars

10 cm/s is a small shift in the focal plane

- Centroid to a fraction ~10⁻⁵ of a line width
- In a R=100,000 spectrograph with 3 pixel sampling:
 - -1 km/s = 1 pixel
 - $-10 \text{ cm/s} = 10^{-4} \text{ pixel} = 18 \text{ Å}$
 - HgCdTe lattice block = ~7 Å

Worrying effects in HxRGs

- Strange pixels
 - Get good at identifying and masking these pixels
- Pixel response function
 - QE, higher moments, pixel locations
- Non-linearity related changes PSF size
- Variable inter-pixel capacitance
 Part of PSF for signal only
- Image memory

Two kinds of RV spectrographs

Diffraction-limited design with AO

PARVI-OFC

PARVI OFC jumble

PARVI uses an EOM comb with a highly non-linear fiber for "octave spanning" to enable *f-2f* self-referencing.

+								
				PARVI Instrument Error Budg	jet			
+				Instrumental Error (Calibratable)	31.4			
	Instrumental Error (Uncalibratable)	17.2]	Calibratable Error Contribution	4.7		Calibration Source (Uncalibratable)	5.4
+	Fiber & Illumination	5.0		Thermal-Mechanical	29.6		Calibration Source (uncalibratable)	3.6
÷	Calibration source modal noise	0		Thermal stability (grating)	Q		Wavelength stability	3.0
+	Continuum modal noise	0		Thermal stability (grating)	15		Photon noise	2
+	Near-field scrambling	0		Thermal stability (closs-disperser)	12		Filotoffiloise	
+	Far-field scrambling	0		Thermal stability (camera)	8		Calibration process	4.0
+	Stray light and ghosts	3		Ontical elements (tilt)	10		Software algorithms	4.0
+	Polarization	4		Vibrational stability	2		Contrare algorithms	
╈	Focal ratio degradation (science)	0		Pressure stability	5			
t	Encal ratio degradation (calibration)	0		I N2 fill transient	15		External Error (Uncalibratable)	0.0
+	Double complete mechanical drift	0		Zeredur phase change	1		External Error (offcanbratable)	0.0
+	Elber Elber contemination	0		Cetical elemente (fecue)	2		Telescon	0.0
+	Piper Fiber contamination	0		Optical elements (locus)	3		Cuiding array	0.0
╞	Reformater unit	U					Atmospheric Dispersion Corr	0
ł	Determine affects	45.4		Detector offerte	10.5		Atmospheric Dispersion Corr.	0
	Detector effects	15.4		Detector effects	10.5		Focus	0
1	Latent images	10		Pixel innomogeneity	10		vvindsnake	0
	Pixel innomogeneity/Non-linearity	10		Electronic noise	1		Concert Provention	Mahaa
ł	Interpixel capacitance	0		Pixel location error	0		General Parameter	Value
ł	Description of the little	2.2		Detector thermal expansion	3		Calibration factor	0.85
ł	Barycenter correction	3.3		Readout themai transients	0		On sky liber diameter (*)	0.06
+	Algoninms	1		CIE	U		Instr. Resolution	100000
ł	Exposure midpoint time	3					Number of science slices	1
ł	PSF variation	1						
┝	Coordinates and proper motion	0		Total Instrumental Error	19.7	cm/s		
$\frac{1}{2}$	Poduction pipolino	5.0		iotal fist unertal Erfor	10.7	UII/S		
+	Software algorithms	5.0						
	Sonware algorithms	C						

After calibration of thermal mechanical effects with the OFC metrology, the error-budgets are dominated by the HxRG

EarthFinder: EPRV from space

NASA has funded the Astrophysics Probe Study (< \$ 1B); Plavchan et al.

Image credit: Ball Aerospace

Payload

1.5 m telescope

Optical Spectrograph (R ~150,000) Near IR Spectrograph (R ~ 150,000) Near UV Spectrograph (R = 200, 4000)

L2 Orbit, 5 year mission

Survey 70 stars for Earth mass planets

Why Space? Tellurics: Atmospheric lines

From the ground, may introduce RV errors up to ~10 cm/s in the visible, & up to ~1 m/s in the NIR

Why Space? Cadence from L2 orbit

- Targets > 45° out of ecliptic plane are available all year
 70.7 % of celestial sphere
- Targets < 45° degrees out of ecliptic plane have two observing seasons
 - 90 days < season < 180 days</p>

Solar 🔹 direction **Field of** Regard Solar direction Paths of celestial objects over a year shown as dotted lines Radius of path = sin(ecliptic latitude)

North Ecliptic Pole

Credit: Ball Aerospace

Stellar Activity

Approaches under exploration for activity mitigation are all available from space:

Cadence Wavelength coverage R~200k resolution Line-by-line analysis Simultaneous photometry

Many errors are eliminated or heavily improved by going into space

But the remaining errors are dominated by the CCDs and H4RGs !!

Based on Halverson+2016

Thanks