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expressed as the grad lent Of d SCd |a r fleld . Overlap areas represented by green arrows are expected to scale mostly linearly with aggressor signal (and with local flux),
whereas yellow arrows are expected to scale mostly quadratically.
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i O Demonstrated signal redistribution algorithms (Antilogus et al. 2014, Gruen et al. 2015, Guyonnet et al. 2015, Coulton et al. 2018) provide incomplete
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Nl | - X-ray chargecloud sum ratios and lag-specific correlations extracted from flat field pair difference images.
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