

Investigation of Deferred Charge Effects in LSST CCD Sensors

000

Adam Snyder Stanford University, SLAC ISPA: 12/04/2018

Credit: Michael Schmind

Each pixel-to-pixel transfer of charge is driven by:

- Self-induced drift/electrostatic repulsion at high signal
- Fringing fields at low signal
- Thermal diffusion in intermediate cases

Dependent on CCD temperature, clock timing and clock voltages.

Effects dependent on number of transfers:

- Transfer due to self-induced drift, fringing fields, and diffusion
- Uniformly distributed single electron traps
 - Bulk traps
 - Radiation-induced traps

Effects independent on number of transfers:

- Design traps fixed charge loss of up to O(100) e-
- Process traps fixed charge loss of O(10) e-
- Electronic effects
 - Drifting bias offset
 - Incomplete reset of the sense node

<u>Charge Transfer Inefficiency (CTI)</u> - ratio of electrons not transferred between two pixels, to the total electrons before the transfer.

<u>Extended Pixel Edge Response (EPER)</u> - measurement of deferred charge in the overscan pixel region, after a flat field image.

ITL Serial Deferred Charge

LSST Serial CTI Specification: < 5E-6

- Measured with EPER at 50,000 e- and 1,000 e-
- Additional analysis using Fe55 X-ray events
- Data from testing of assembled rafts

Serial Deferred Charge Results:

- Majority of channels meet LSST specifications, but...
 - Deferred charge seen in overscans at high flux
 - Deferred charge seen in Fe55 hits at low flux

The following results are from one typical ITL production sensor.

High Flux Deferred Charge

Overscan traces at different fluxes show deferred charge signal at high flux.

High Flux Deferred Charge

Similar effect seen more strongly in vendor data.

Analysis of Fe55 hits:

- Take many Fe55 acquisitions (w/ or w/out "sky" background)
- Aggregate identified Fe55 hits using a median stack

Nominal:

Large Synoptic Survey Telescope

Effect is lessened with increasing "sky" background, but still present.

100 ADU:

Low Flux Deferred Charge

Amp11: Fe55 Hit Profile

Coarse binning in the serial direction shows no dependence on number of transfers.

Low Flux Deferred Charge

This effect is reflected in EPER measurements as high CTI at low flux but is NOT necessarily dependent on # of transfers.

Low Flux Deferred Charge

Signal in the first overscan provides evidence of a trap (<10 e-).

Two effects at work:

- All channels show deferred charge effects at high flux.
 - Flux dependent, exponential decay in overscans.
 - Present in both vendor (Archon controller) and raft data (REB controller).
- Some channels show deferred charge effects at low flux.
 - Non-proportional, very high CTI from EPER measurements.
 - Asymmetry in aggregated Fe55 profiles.
 - No dependence on number of transfers.
 - Evidence for a constant number of trapped electrons.

Phenomenological Modeling

Model the following deferred charge effects in separate regimes:

High Flux (>50,000 e-):

- Proportional CTI component
 - Assume constant or small linear dependence.
- Video channel electronic effect
 - Assume flux-dependent exponential decay.
 - Assume no dependence on number of transfers.
- Negligible contribution from low-flux component.

$$S(x,F) = A(F)e^{-x/\tau_{\text{high}}} + \text{CTI}^x N_T F$$

x = overscan pixel number N_T = number of transfers F = Flux in last pixel

High Flux Exponential Model

Overscan Model Overscan Data Flux = 54000 e-Flux = 54000 e-140 140 Flux = 74000 e-Flux = 74000 e-Flux = 77000 e-Flux = 77000 e-Flux = 83000 e-Flux = 83000 e-120 120 Flux = 86000 e-Flux = 86000 e-Flux = 91000 e-Flux = 91000 e-Flux = 96000 e-Flux = 96000 e-100 100 Flux = 105000 e-Flux = 105000 e-Flux = 115000 e-Flux = 115000 e-Flux = 123000 e-Flux = 123000 e-80 80 S_x [e-] S_x [e-] Flux = 134000 e-Flux = 134000 e-Flux = 144000 e-Flux = 144000 e-60 60 40 40 20 20 0 0 ż 6 10 ż 10 8 6 Ŕ x [overscan pixel number] x [overscan pixel number]

 $S(x,F) = A(F)e^{-x/\tau_{\text{high}}} + \text{CTI}^x N_T F$

High Flux Exponential Model

High Flux Results:

- A(F) increases with flux, though not a "simple" linear relation.
- Tau and CTI relatively stable over 60,000 e- to 140,000 e- range.

Low Flux (<3000 e-):

- Proportional CTI component
 - Contributes only to first overscan.
 - Calculated by extrapolating from high flux CTI results.
- Trap of O(10) e- at the start of the serial register.
 - Assume trapped charge is constant with flux in this regime.
 - Assume exponential release of trapped charge.
 - Assume no dependence on number of transfers.
- Negligible contribution from high-flux component.

$$S(x,F) = C_{\rm trap} e^{-x/\tau_{\rm low}} + CTI^x N_T F$$

x = overscan pixel number N_T = number of transfers F = Flux in last pixel

Low Flux Exponential Model

Overscan Data **Overscan Model** Flux = 90 e-Flux = 90 e-8 Flux = 110 e-8 Flux = 110 e-Flux = 160 e-Flux = 160 e-Flux = 220 e-Flux = 220 e-Flux = 280 e-Flux = 280 e-Flux = 510 e-Flux = 510 e-6 Flux = 680 e-6 Flux = 680 e-Flux = 930 e-Flux = 930 e-Flux = 1220 e-Flux = 1220 e-Signal [e-] Flux = 1700 e-Flux = 1700 e-Signal [e-] Flux = 2270 e-Flux = 2270 e-2 2 0 0 2 8 10 2 8 4 6 **Overscan Pixel Number Overscan Pixel Number**

 $S(x,F) = C_{\rm trap} e^{-x/\tau_{\rm low}} + CTI^x N_T F$

10

Low Flux Exponential Model

$$S(x,F) = C_{\rm trap} e^{-x/\tau_{\rm low}} + CTI^x N_T F$$

Low Flux Results:

- Fit results provide evidence for fast release trap.
 - Constant regime trapped charge between 100 e- and 1700 e-.
 - Fluxes not low enough to fully probe proportional trapped charge regime.

Encouraging results for 3-component model for overscan results:

$$S(x,F) = A(F)e^{-x/\tau_{\text{high}}} + C_{\text{trap}}e^{-x/\tau_{\text{low}}} + \text{CTI}^x N_T F$$

Next steps:

- Generalize for multiple amplifiers
- Joint fitting of all data to the model

What about realistic sources?

- Use model to simulate deferred charge effects on realistic sources and Fe55 X-rays events.
- Analyze images of realistic sources and compare with predictions from model.

Backup Slides

Measuring deferred charge in realistic sources:

- 1. Project grid of "spots" onto the CCD.
- 2. Use HSM for source moment calculations.
- 3. Study deferred charge effects as function of:
 - a. Position
 - b. Flux
 - c. "Sky" background

Real projected sources on LSST CCD.

Large Synoptic Survey Telescope

Simulated sources with only proportional CTI (500 transfers)

Simulated sources with high flux deferred charge model.

Summary

Current Work:

- "Spot" projector has been built and tested at SLAC.
- Source moment measurements dominated by vibrations in the test set-up.
 - Characterizing effects of vibrations on moment results.
 - Minimization of vibrations by modifying the test set-up.

Low Flux EPER

Comparison of two amplifiers, showing large CTI discrepancies at low flux.

High Flux Effects Only:

- Fit parameters extrapolated to low flux.
- Randomly simulated Fe55 hits across an amplifier.
- Applied deferred charge model (CTI+Exponential Decay).

Unable to recover Fe55 asymmetry and non-proportional CTI.

E2V Serial Deferred Charge

Fe55 Results

Fe55 analysis:

- No position dependence.
- Large affect even at low fluxes.

Overscan Traces

Large Synoptic Survey Telescope

Trailing charge (no flux dependence) seen in E2V sensors at BNL.

Overscan Traces (New Operating Conditions)

Effect disappears with increasing reset gate voltage swing.