Planning for the LCLS-II Data System: Requirements, Benchmarks & Design

Central Computing Support for Photon Sciences Workshop Sep 24th 2018

Amedeo Perazzo LCLS Controls & Data Systems

SLAC

LCLS science case

Guiding principles for the buildout of the LCLS-II data system

Benchmarks and projections

Design

LCLS Science Case

BRATTO

Data Analytics for high repetition rate Free Electron Lasers

FEL data challenge:

- Ultrafast X-ray pulses from LCLS are used like flashes from a high-speed strobe light, producing stop-action movies of atoms and molecules
- Both data processing and scientific interpretation demand intensive computational analysis

LCLS-II will increase **data throughput by three orders of magnitude** by 2025, creating an exceptional scientific computing challenge

LCLS-II represents SLAC's largest data challenge by far

Example of LCLS Data Analytics: The Nanocrystallography Pipeline

Serial Femtosecond Crystallography (SFX, or nanocrystallography): huge benefits to the study of **biological macromolecules**, including the availability of femtosecond time resolution and the avoidance of radiation damage under physiological conditions ("**diffraction-before-destruction**")

Well understood computing requirements

Significant fraction of LCLS experiments (~90%) use large area imaging detectors Easy to scale: processing needs are linear with the number of frames

Must extrapolate from 120Hz (today) to 5-10 kHz (2022) to >50 kHz (2026)

Guiding Principles

BIOSE

Computing Requirements for Data Analysis: a Day in the Life of a User Perspective

- During data taking:
 - Must be able to get real time (~1 s) feedback about the quality of data taking, e.g. Ο
 - Are we getting all the required detector contributions for each event?
 - Is the hit rate for the pulse-sample interaction high enough?
 - Must be able to get **feedback** about the **quality of the acquired data** with a latency lower than the Ο typical lifetime of a measurement (~10 min) in order to optimize the experimental setup for the next measurement, e.g.
 - Are we collecting enough statistics? Is the S/N ratio as expected?
 - Is the resolution of the reconstructed electron density what we expected?
- During off shifts: must be able to run multiple passes (> 10) of the full analysis on the data acquired during the previous shift to optimize analysis parameters and, possibly, code in preparation for the next shift
- During 4 months after the experiment: must be able analyze the raw and intermediate data on fast access storage in preparation for publication
- After 4 months: if needed, must be able to restore the archived data to test new ideas, new code or new parameters

SLAC

Key aspects LCLS-II data system:

- 1. Fast feedback
- 2. 24/7 availability
- 3. Short burst
- 4. Storage
- 5. Throughput
- Speed and flexibility of development cycle is critical

Hardware design guiding principles Performance Scalability Resilience Software design guiding principles Flexibility User friendliness Performance

When conflicts arise go back to the top guiding principle

Make full use of national capabilities

LCLS-II will require access to High End Computing Facilities (NERSC and LCF) for highest demand experiments (exascale)

Photon Scienc Speedway

Stream science data files on-the-fly from the LCLS beamlines to the NERSC supercomputers via ESnet

Very positive partnership to date, informing our future strategy

SLAC

Benchmarks and projections

Dig to

Process for determining future projections

Includes:

- 1. **Detector rates** for each instrument
- 2. **Distribution of experiments** across instruments (as function of time, ie as more instruments are commissioned)
- 3. Typical uptimes (by instruments)
- 4. **Data reduction** capabilities based on the experimental techniques
- 5. Algorithm **processing times** for each experimental technique

Undulator	Instrument	Endstation		n	Technique		Detector	Detector Size	Detector Rate (Hz)	Data Rate (aggregate) (GB/s)	Ultilization Factor (0-1)	Data Reduction Type (1st Cut)		DR Factor (1st cut)	Data Reduction Type (Optimistic)) Peak Finding	DR Factor (Optimistic)	FY20 Q1	FY20 Q2	FY20 Q3	0 FY20 Q4	FY21 Q1	FY21 Q2 0.25	Q3	21 F 3 5 0
SXU -	• NEH 1.1 •		DREAM -		COLTRIMS *		Digitizer *	800000	100000	160.0	0.75	Zero suppression	*			0.0020					0.25		0.25	
SXU -	NEH 1.1 *	DR	EAM	*	Time of Flight	*	Digitizer 👻	1000000	100000	200.0	0.75	Zero suppression	*	0.020	Peak Finding 💌	0.0020				0.13	0.13	0.13	0.06	C
SXU -	NEH 1.1 *	U	MP	٠	Time of Flight	Ŧ	Digitizer *	1000000	100000	200.0	0.75	Zero suppression	*	0.020	Peak Finding *	0.0020				0.13	0.13	0.13	0.06	C
SXU -	NEH 1.1 *	L	MP	٠	Imaging	*	SXR Imag. + Digi. *	400000	10000	82.0	0.45	Veto	٠	0.100	N.A	0.1000							0.13	C
SXU -	NEH 2.2 *	L	JE	*	XAS / XES	*	TES 👻	1000	100000	20.0	0.60	Zero suppression	*	0.100	Binning *	0.0000								C
SXU -	NEH 2.2 -	L	JE		XAS / XES	Ŧ	TES *	10000	100000	200.0	0.60	Zero suppression	٠	0.100	Binning *	0.0000								
SXU -	NEH 2.2 -	L	JE	*	XAS / XES	*	RIXS-ccd *	4096	1000	0.0	0.60	N.A.	*	1.000	Accumulating *	0.0010				0.25	0.50	0.25	0.25	C
SXU -	NEH 2.2 -	R	IXS		IXS / RIXS	Ŧ	RIXS-ccd *	4096	1000	0.0	0.60	N.A.	٠	1.000	Accumulating *	0.0010					-	0.13	0.13	C
SXU -	NEH 2.2 *	R	IXS	*	XRD / RXRD	Ŧ	SXR Imaging *	1000000	10000	20.0	0.60	ROI	*	0.100	Accumulating *	0.0001						0.06	0.06	C
SXU -	NEH 2.2 *	R	IXS	*	XPCS	*	SXR Imaging *	1000000	10000	20.0	0.60	Compression	*	0.500	-	0.1000						0.06	0.06	C
SXU -	NEH 1.2 *			*	X-ray/X-ray	Ŧ	SXR Imaging +	1000000	10000	20.0	0.30	ROI	*	0.100	Binning *	0.0001								
SXU 👻	NEH 1.2 *			*	Imaging	*	epix100-HR + Digi.	4000000	5000	42.0	0.45	Veto	Ŧ	0.100	N.A. 👻	0.1000								
SXU -	NEH 1.2 -			*	XAS / XES	*	RIXS-ccd *	4096	1000	0.0	0.60	N.A.	Ŧ	1.000	Accumulating -	0.0010								

Data Throughput Projections

LCLS Data Throughput

- Peak Data Throughput
- Peak Data Throughput, Reduced
- Average Data Throughput
- Average Data Throughput, Reduced

SLAC

Offsite Data Transfer: Needs and Plans

-SLAC

Border Network: Needs and Plans

Storage and Archiving Projections

Note on how processing needs are calculated

Example: indexing time per eivent for nanocrystallography

Processing Projections

-SLAC

The size of each bubble represents the fraction of experiments per year whose analysis require the computing capability, in Floating Point Operations Per Second, shown in the vertical axis

• Key requirement: data analysis must keep up with data taking rates

CPU hours per experiment are given by multiplying the **capability requirement (rate) by the lifetime of the experiment**

- We expect to have ~150 experiments per year with a typical experiment lasting ~3x12 hours shifts
- Example: an experiment requiring 1 PFLOPS capability would fully utilize a 1 PFLOPS machine for 36 hours for a total of 36 M G-hours

SELECCO.

LCLS-II Data Flow

SLAC

Data Reduction Pipeline

- Besides cost, there are significant risks by not adopting on-the-fly data reduction
 - Inability to move the data to HEC, system complexity (robustness, intermittent failures)
- Developing toolbox of techniques (compression, feature extraction, vetoing) to run on a Data Reduction Pipeline
- Significant R&D effort, both engineering (throughput, heterogeneous architectures) and scientific (real time analysis)

Without on-the-fly data reduction we would face unsustainable hardware costs by 2026

Summary: DOE High End Computing (HEC) Facilities will play a critical role, complemented by dedicated, local systems

LCLS-II will require:

- Access to HEC Facilities
 - For highest demand experiments (exascale)
- **Dedicated**, **local** capabilities
 - **Data Reduction Pipeline**: Data compression, feature extraction, real time analysis
 - Science Data Facility: Storage and analysis for standard experiments

Operational necessity for local & dedicated capabilities:

- Real time (< 1s) analysis
- **Data reduction** (before sending to HEC over ESnet)
- Unacceptable use of HEC (immediate burst jobs)
- Coordinated outages between HEC and experimental facilities not viable if HEC required for all experiments

SLAO

20

A viable approach will have to combine local and complex-wide facilities