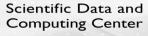
BNLBox

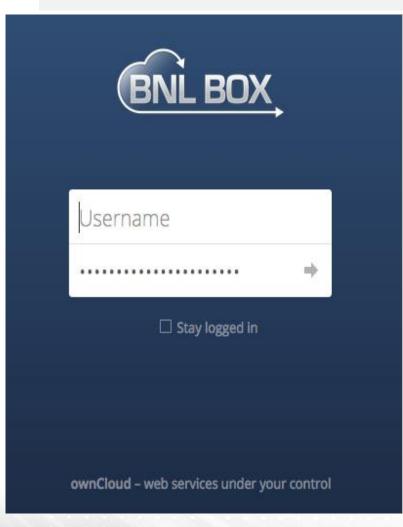
Hironori Ito Brookhaven National Laboratory September, 2018

Cloud storage

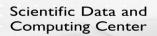
- Commercial providers (\$/GB/month, \$ per access, \$ for the data rate, etc....)
 - DropBox
 - MS OneDrive/Azure Cloud storage
 - Google Drive/Cloud Storage
 - Box
 - Amazon S3/Glacier
 - Etc...
- Software (must provide own hardware)
 - Owncloud (BNLBox)
 - Nextcloud
 - Seafile
 - Pydio
 - Etc...



Reason for Cloud Storage

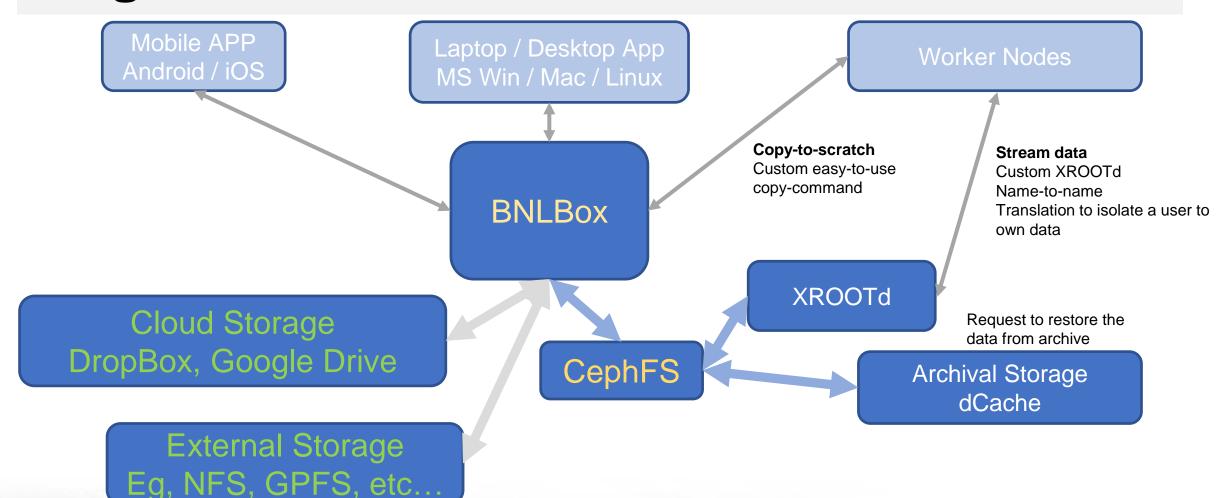

- Ease of use
 - Easy Web access.
 - Ssh keys and/or x509 certs are too difficult for the most of users.
 - Automatic transfers of data to the storage
 - Don't have resources or man power to monitor the data transfer.
- Availability of clients
 - Many of them offer clients in various OSs.
 - Many users and experiments use different OSs.

Features of BNLBox



- Clients are available in many popular platforms;
 - Linux, Mac OS, MS Win, Android and IOS, etc...
- · Extremely easy to use.
 - Synchronize data automatically
 - NOTE:
 - Requires the same amount of storage in local and remote storage if the Sync program is used.
 - Push command won't require the same amount of storage.
- · Quota for each users
- Users can share data
 - · With the other BNLBox users
 - Any other users by URL link with <u>password</u>, <u>expiration date</u>, etc...

- Allow access to the external storage
 - GPFS, NFS, etc...
- Extensible for other storage
 - Archival storage
- Scalable
 - More users
 - More throughput
 - More data



Diagram

Scientific Data and Computing Center

Performance of data transfers

- Default sync app can synchronize data at ~100MB/s per client. (100MB/s -> 360GB/Hr -> 8.6TB/day)
 - Sufficient for small data ~ TB.
 - Most users typically won't need or physically have higher throughputs in their systems.
 - Single spinning disklO on desktop(~100MB/s).
 - Wifi N (max 300Mbps~40MB/s)
 - LAN (1Gbps=120MB/s)
 - The largest single disk at 12~14TB.
- High demand users require higher throughput.
 - 10TB or more.
 - High performance storage at the remote clients
 - Large raid storage
 - BNLBox supports standard WebDAV API
 - Easy to write own client for data transfer.
 - No limit of data rate.
 - Increase the data rate by increasing concurrency
 - Won't require the same amount of data locally.
 - Add any other data management codes.

Copying without sync clients

copy_bnl_box.rb -h

Usage: copy_bnl_box.rb [options] source destination

NOTE: to specify the owncloud storage, you need to append 'box:' to your path seen in your bnl box service

```
-h, --help Display help message
-s, --https_proxy ProxyHost Set https proxy
-r, --url URL Set none-default url
-p, --password password Set User Password
-u, --username username Set User Name
```

Copy from local to BNLBox

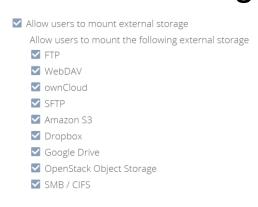
ruby copy_bnl_box.rb vomses box:/Documents/testcopy.1
Username:
Password:
Source: vomses
Destination:
/owncloud/remote.php/dav/files/hiroito/Documents/testcopy.1

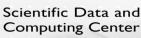
Copy from BNLBox to local

ruby copy_bnl_box.rb box:/Documents/testcopy.1
/home/hiroito/testcopy.1
Username:
Password:
Source:
/owncloud/remote.php/dav/files/hiroito/Documents/testcopy.1
Destination: /home/hiroito/testcopy.1

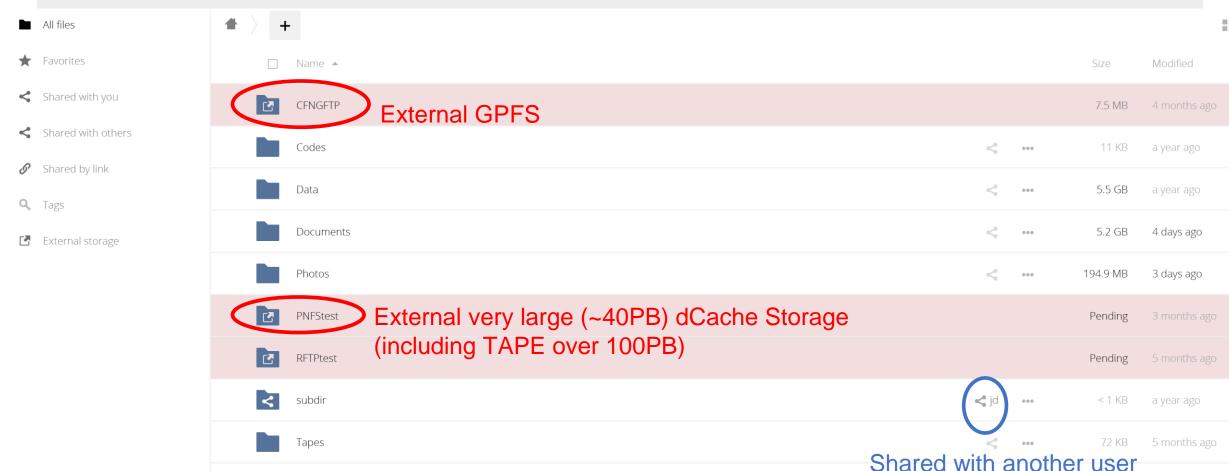
Stream Access

- XROOTd and WebDAV can stream data
- Separation or isolation of the data-write/sync services and the data-read access allows higher scalability and stability for all users.
- XROOTd can cleverly map user data in BNLBox in a very simple way.
 - Owncloud web URL maps a user data by https://host/owncloud/index.php/apps/files/MYDATA
 - This is different from how Owncloud physically stores user data in its storage as /base-directory/username/files/MYDATA
 - XROOTd can cleverly hide "username" of physical files by providing access by root://host/files/MYDATA
 - Courtesy of Andrew Hanushevsky from XROOTd



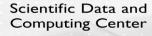

External Storage

- BNLBox currently supports the following external storage.
 - Data is stored in the external storage and not in BNLBox.
 - FTP, SFTP, Owncloud(remote), Google Drive, Dropbox, Amazon S3, SAMBA/CIFS, WebDAV, OpenStack Object Storage.
 - Using SFTP option, BNLBox is possible to serve the data stored in GPFS or NFS without copying to its own storage (CephFS).



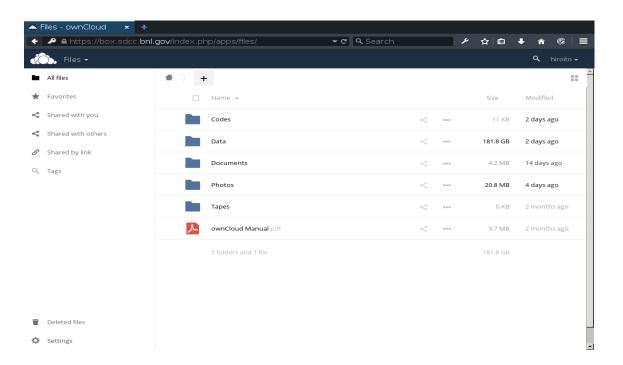
Examples of external storage

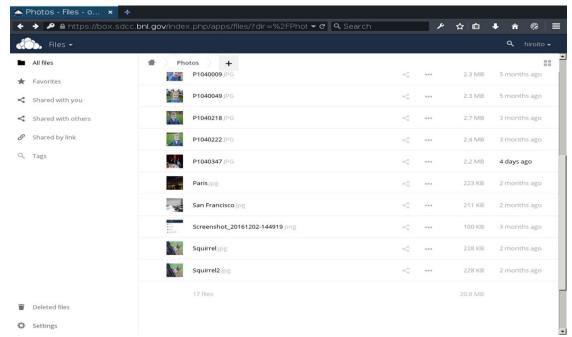
Archive data


- Some users would like to archive or store data in the tape system.
 - Will the data be read again?
- Difficulties
 - Efficiency
 - Read throughput
 - Reading small fraction in many different tapes will results in low throughput.
 - · Seek is slow.
 - Mounting a tape is slow.
 - Must write in a way to read fast

Rule

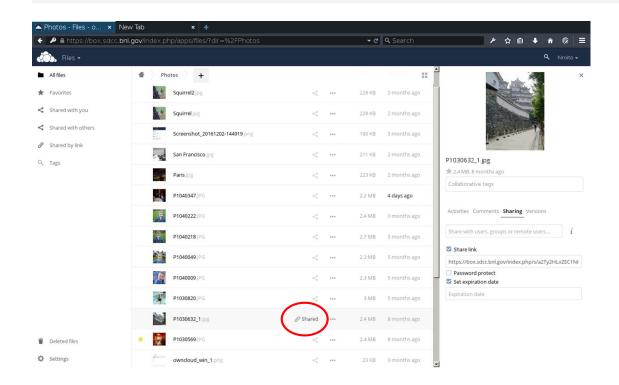
- "/Tapes/" directory will be used to indicate data to be stored to the tape system.
- Files small than certain size (1GB) will be tarred to produce a large file
- Tar files smaller than 1GB will be archived to tape only after certain period.
- Once files are transferred to the archival system, they will be removed from "/Tapes/" directory.
 - Reduce the usage of quota.
 - Create index or individual local catalog file to record the data in the archival system.
 - The above index will be synchronized by the BNLBox to their local machine.
 - Also update the central catalog for archived data
- Restore requests will be made through Web interface.
 - Data will be restored to different directory.

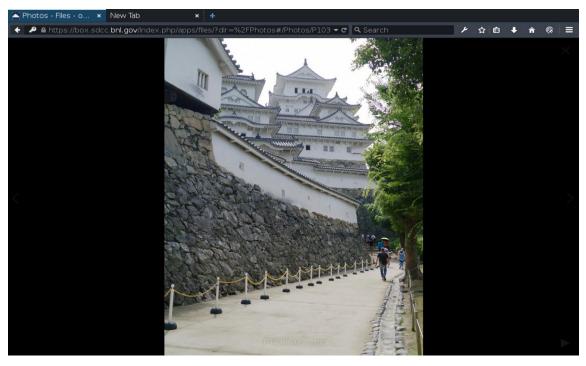




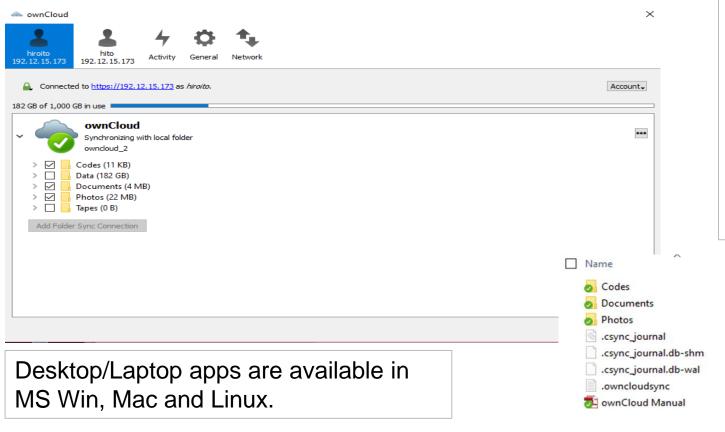
Sample images

Users only see their own directory.





Share data with anyone

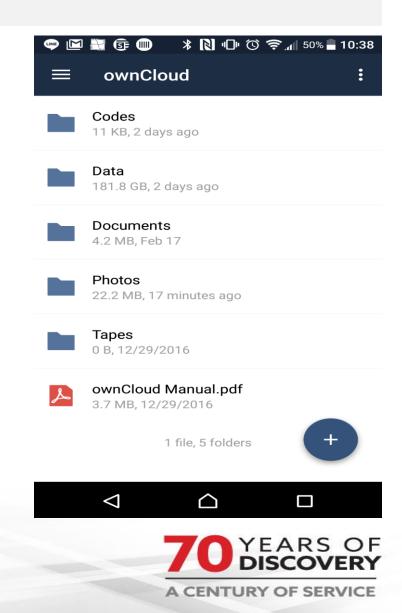

Users can share their data publicly or privately with password.

Only synchronize the data you want

Using the provided app, users can decides what to sync automatically. For an example

- Data and Tapes directories are not synchronized.
- Codes, Documents, Photos directories are synchronized automatically.

Date modified	Туре	Size
3/2/2017 10:26 AM	File folder	
3/1/2017 4:51 AM	File folder	
3/3/2017 10:15 AM	File folder	
3/3/2017 10:15 AM	Data Base File	92 KB
3/3/2017 10:15 AM	DB-SHM File	32 KB
3/3/2017 10:15 AM	DB-WAL File	0 KB
3/3/2017 10:15 AM	Text Document	65 KB
12/29/2016 2:18 PM	Adobe Acrobat D	3,822 KB



Conclusion

- Cloud storage could be potentially useful for data intensive scientific communities.
- BNLBox will provide our users with ability to store and access their data anywhere by the easy-to-use applications on various platforms.
- BNLBox allows the owners of the data to share with anyone they desire with automated data replication
- BNLBox will allow the archival of the data.

