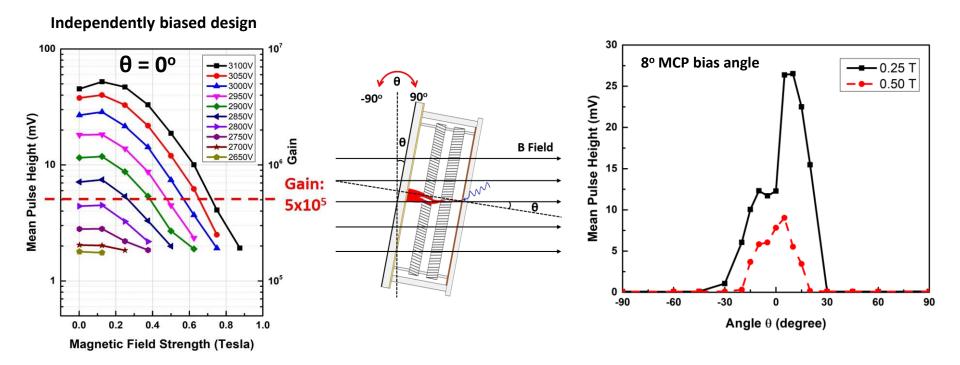
$LAPPD^{TM} / MCP-PMT$

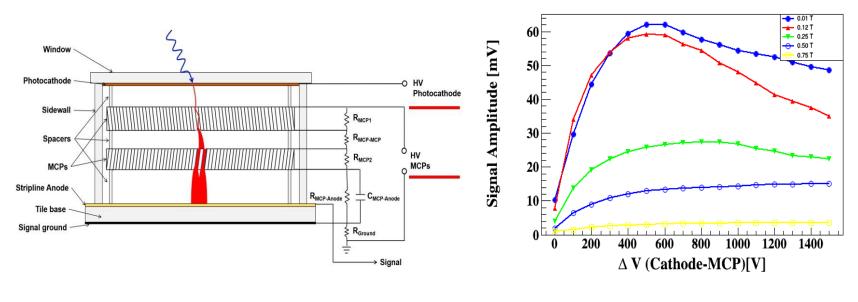
Goal:

Adapt LAPPDTM to EIC requirements (magnetic fields, pixelated readout)

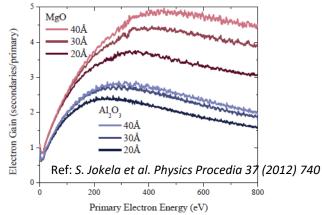

FY 18 Report:

- 6 cm MCP-PMT characterized in details in magnetic fields
- 20 cm LAPPD characterized in magnetic fields
- Pixelated readout baseline tested in beamline

FY 19 Proposed tasks:


- MCP-PMT after pulse study to better understand the ion feedback for LAPPD
- Improvement of RMS timing by modifying the bias voltages
- Produce a detector with 5µm pore size MCP and minimum spacing to further improve magnetic-field performance and fast timing (possibly <10 ps)
- Test of MCP-PMT/LAPPD with different configurations (smaller pore size and reduced spacing) in lab and in a magnetic fields
- Demonstration of capacitive-coupling pixelated readout through ALD coated glass

LAPPDs – Characteristics (6 cm ones) in magnetic fields



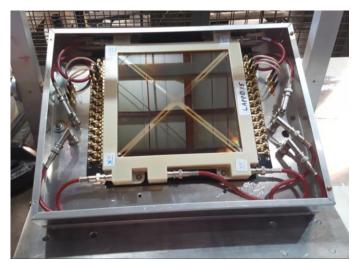
- MCP-PMT characteristics in dependence of: Magnetic field strength, HV, tilt angle, and gap voltages were all tested in magnetic fields
- Baseline tests show for a device with Gain > 5x10⁵, Magnetic Field tolerance is 0.7 T
- The MCP-PMT performance in magnetic field is clearly angle related, due to the 8° MCP bias angle, the highest gain is obtained around 8°.
- Notice the two peaks around ±8°, indicating the effect from upper and lower MCP bias angles are different. Simulation is undergoing with collaborators to explain the different effect.

LAPPDs – Characteristics (6 cm ones) in magnetic fields

- HV(MCPs) was fixed, varies the HV of first gap ΔHV(photocathode–top MCP) by adjusting HV (Cathode).
- Gain increases as ΔHV increases to a maximum then decreases, this can be explained by the MCP gain dependence of primary electron energy.

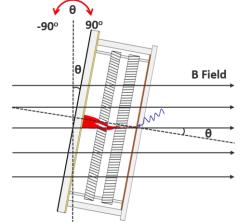
MCP-PMTs design/operation in magnetic fields resulted in a **SBIR phase 1 award** (Incomand ANL, \$150k for 9 months) to develop magnetic field tolerant LAPPDTM (> 1.5 Tesla)

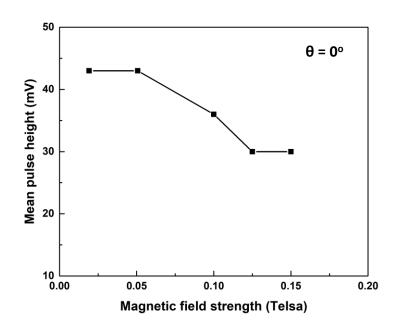
LAPPDs – Characteristics (20 cm) in magnetic fields

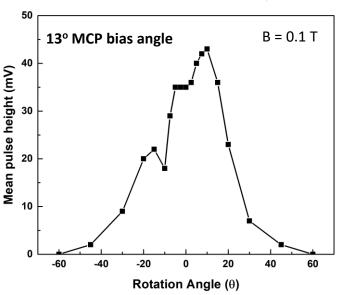

Commercial LAPPDTM delivered and installed at ANL B field facility

Feature	Parameter	
Photodetector Material	Borosilicate Glass	
Window Material	Fused Silica Glass	
Photocathode Material	Multi-Alkali (K₂NaSb)	
Spectral Response (nm)	160-850	
Wavelength – Maximum Sensitivity (nm)	≤ 365 nm	
Photodetector Active Area Dimensions	195mm X 195mm	
Minimum Effective Area	34,989 mm^2	
Active fraction with Edge Frame X-Spacers	92%	
Anode Data Strip Configuration	28 silver strips, Width = 5.2 mm, gap 1.7 mm, nominal 50 Ω Impedance	
Voltage Distribution	5 taps for independent control of voltage to the photocathode and entry and exit of MCP	

Pore size: 20 µm

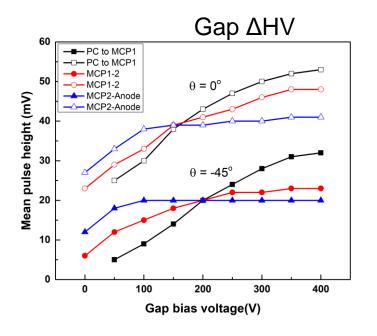

Activation area: 195 mm x 195 mm

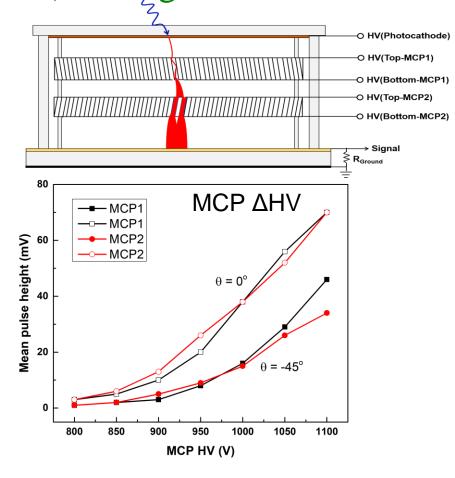




LAPPDs – Characteristics (20 cm) in magnetic fields

Due to the magnetic sensitive components (Kovar is used as shims in the current LAPPD TM), we can not go to high magnet field test, a new LAPPD TM with non-magnet components is scheduled to be fabricated and tested in Sep. 2018. The results here demonstrate the capability of the facility for 20 cm LAPPD TM .

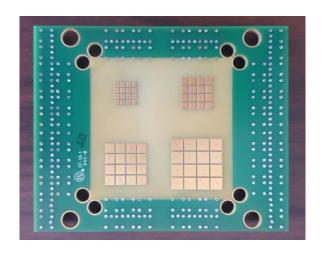




- Similar behavior as 6 cm MCP-PMT: gain decrease as the magnetic field increases
- Two local gain maximum corresponding to the 13° bias angle of MCPs used in LAPPDTM

LAPPDs – Characteristics (20 cm) in magnetic fields

Gap and MCP Δ HV dependence

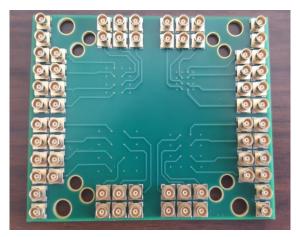


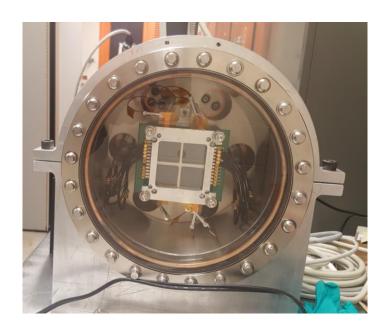
- HV applied to all three gaps affects the gain of the LAPPD
- HV between the photocathode and MCP1 gap has the greatest slope, indicating the strongest effect
- LAPPD gain becomes a constant with the MCP2-Anode bias HV above a threshold
- HV applied to MCPs seems to have NO preference, equally affects the LAPPD gain

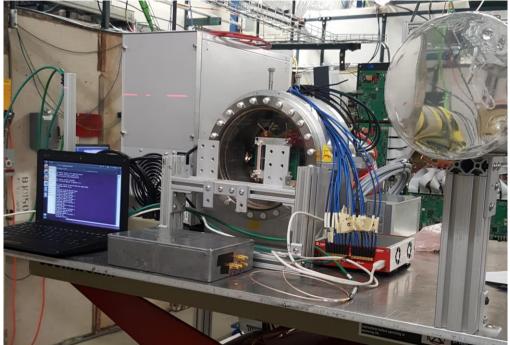
LAPPDs – Pixelated readout

Demountable chamber installed on the stage of Fermilab Test Beam Facility MT6.2C

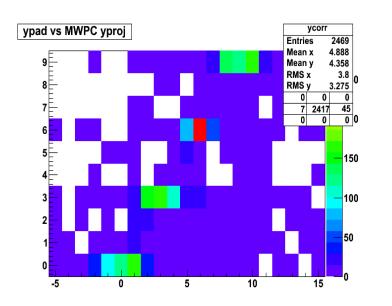
Pad sizes:

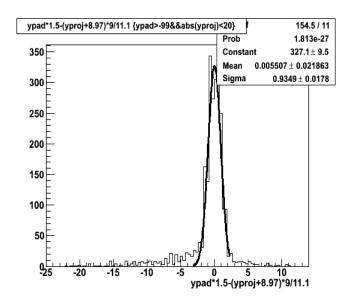

2mm x 2mm


3mm x 3mm


4mm x 4mm

5mm x 5mm


Spacing between pads: 0.5 mm



LAPPDs – Pixelated readout

Example correlation between the y-axis of a 3 mm x 3 mm pad and the MWPC projection

Pixel size	2 mm x 2 mm	3 mm x 3 mm	4 mm x 4 mm
σ (x)	-	1.01 mm	1.11 mm
σ (γ)	0.73 mm	0.93 mm	1.43 mm
σ (expected)	0.6 mm	0.9 mm	1.2 mm

- Expected position resolution σ (expected) = pixel size/ $\sqrt{12}$
- Beamline experiment preliminary results show that experimental position resolutions are close to the expected position resolutions

LAPPDs – Conclusion

- LAPPD/MCP-PMTs were characterized in details in magnetic fields
- Further development of magnetic field tolerant LAPPD progresses well
- Pixelated readout development for LAPPD was started, will be the next focus
- LAPPD R&D, DIRC R&D, electronics R&D are well aligned with each other for demonstration of DIRC prototype with LAPPD™ sensors