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sPHENIX MIE PD-2/3 review — May 28-30, 2019

| X

SPHERIX

very positive review, few recommendations, looking forward to approval this summer

cComments. however, see recommendations and

Yes, for Electronics and DAQ; however, see comments.

Charge Question #1b: Is the technical design sound and sufficiently mature
to support the performance expectations of PD2/37?
Yes, amply demonstrated at Test Beam for ECal/HCal. See above for TPC.

Charge Question #1c: Is the technical design sound and sufficiently mature
to support the performance expectations of PD2/3?

Yes for TPC and Electronics and DAQ, contingent on addressing the
recommendation.

 @ENERGY

NATIOBAL LABURATORY

Closeout of PD-2/3 review

« State-of-the-art collider detector incorporating

RHIC Program: sPHENIX

technology developed for LHC by NP and HEP
* Pilot MIE for the new $50M rule
» Just passed PD-2/3 Review
- Data taking to start in 2023

Expanding jets probe Pt '
various distance eth P ;

PPT AR T2
scales :

R N V1 « High energy jets probe the structure of

the QGP on different length scales and
determine where and how it changes
from particle-like quarks and gluons to a
structureless “perfect” liquid

 Heavy quark atoms (Upsilon) also probe

vi3s) v(2s) Y(1s) the QGP structure at different scales

sPHENIX will increase the data collection rate by a BROOKHEAVEN

factor of 10 fully utilizing the enhanced RHIC luminosity™* '®"**" M82840%Y
16
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Intermediate silicon strip tracker (INTT) — RIKEN contribution

- 40cm -

130cm

* Unigue among sPHENIX tracking detectors — single event timing capabillity

e Si Modules tested in 2018

* Track resolution measurements and full readout chain test taking place at FNAL

* |ncludes multi-layer Flexible Printed Circuit bus extender from sensor to Readout Cards

O
SPHERIX



sPHENIX officially a “CERN recognized experiment” H@

List of Recognized Experiments

RE status at CERN http://committees.web.cern.ch/rec/list.htm|

Ref. Experiment since until

O

O

O
RE 33 LIGO 2016 31-MAR-2022 S P H E
RE 34 JUNO 2017 31-MAR-2020
RE 35 SNO+ 2017 31-MAR-2020
RE 36 Mu3e 2018 31-MAR-2021
RE 37 DarkSide 20k 2018 31-MAR-2021
RE 38 DAMIC-M 2019 31-MAR-2022

2019 31-MAR-2022


http://committees.web.cern.ch/rec/list.html

The ALICE ITS lab at CERN

SPHE

sPHENIX collaborators — MIT students and postdocs — at CERN developing
detector control and quality monitoring software for the ALICE ITS. Part of
sPHENIX contribution to ITS production, validates appropriateness of
sPHENIX as CERN recog. exp’t.

LzN

B ALICE ITS

Funds from BNL sent to CERN to build add’| staves
of ITS IB design, to be shipped to BNL.




Developments on many fronts since last PAC

Progress on the science
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theory

First RHIC results demonstrateo

collisions: near perfect fluidity a

Precision studies at R

H|C and

relativistic viscous hyc

surprising properties of Quark-Gluon Plasma created in heavy-ion
Nd extreme opacity
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P evolution

experiment

O
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nat many aspects of final state structure can be understood via

Success of LHC experiments in HI physics demonstrates importance of large acceptance, high resolution

tracking, high collision rates and full

—M+Hadronic calorimetry

Coming decade: Improved instrumentation at RHIC and LHC to understand emergence of QGP
properties from underlying (asymptotically) weakly coupled interactions
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Studying the QGP at multiple scales with sSPHENIX

Quarkonium spectroscopy
vary size of probe

Y (2s) Y(1s)

Y (3s)

Continue deve
driving work w

oping more detailed connec
ith theory community genera

vary momentum/angular scale of probe

SPHE

Jet structure Parton energy loss

vary mass/momentum of probe

photon
gluon
u,d,s
C
o

lons between particular measurements and underlying physics —

ly and specific efforts like JETSCAPE
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anning for the coming decade in hot QCD A

SPHERIX

2015 UUS NP LRP WG5S for 2019 ECFA document

Conclusions of the Town Meeting:

Relativistic Heavy Ion Collisions
https://indico.cern.ch/event/746182

On Wednesday 24 October 2018, a Town Meeting was held at CERN to collect input on the section of relativistic
heavy ion collisions in the update of the European Strategy for Particle Physics. The meeting featured short
presentations of existing and planned future heavy ion experiments at the CERN LHC, the Brookhaven RHIC, the
CERN SPS, the FAIR facility in Darmstadt and the JINR in Dubna. In addition, the meeting provided a forum in
which individual scientists and groups could contribute with short comments and statements. The meeting counted
421 registered participants that covered all experimental and theoretical activities in the field. The meeting
concluded with an open 2-hour discussion of the priorities in the field.

The following text is not endorsed officially by any of the experimental collaborations and facilities mentioned,
but summarizes the consensus view of the scientific community on the priorities of the field, as expressed by the
participants of the town meeting. It is submitted to the Open Symposium of the European Strategy Group in
Granada, Spain by the convenors of the Town Meeting,

F. Antinorn, B. Erazmus, P. Giubellino, K. Redlich and U.A. Wiedemann.

The study of matter under extreme conditions, aside from its intrinsic interest, is central to our
understanding of the early Universe and the evolution of massive stars. At high temperature and
density, new states of matter are dominated by quark and gluon degrees of freedom. Such states
are studied by colliding heavy ions at ultra-relativistic energies. At the highest energies
available at the Large Hadron Collider, the quark gluon plasma (QGP) is created and diagnosed
at nearly vanishing (net)baryon density, i.e. under conditions prevailing in the very early
Universe. Lower beam energies, currently available at the CERN-SPS, RHIC in Brookhaven
and at future facilities such as FAIR in Darmstadt and NICA in Dubna, probe the baryon rich
quark matter under conditions encountered in various astrophysical settings.

Considering the fundamental physics questions that are coming into experimental reach in the
coming decade, the Town Meeting highlighted the following opportunities for fundamental
progress:

1. The top priority for future quark matter research in Europe is the full exploitation of

’Th 2 O 1 S the physics potential of nucleus-nucleus and proton-nucleus collisions at the LHC.

Since its start in 2010, the LHC heavy ion programme has established in PbPb collisions

abundant and numerically large signals for dense, collectively evolving matter on transverse
momentum scales ranging from ~ 100 MeV to 1 TeV. This has opened a broad phenomenology

of strong interaction matter under extreme conditions, including amongst many important

features an unprecedentedly detailed characterization of collective flow in all soft observables
O r and of jet quenching in all hard hadronic observables. The wealth of data collected and analyzed

by all four LHC experiments bears proof that the properties of strong interaction matter can be

accessed with controlled and increasingly precise experimentation in heavy ion collisions at the

Probe the inner workings of QGP by resolving T A i e B P e e o
its properties at shorter and shorter length he Town Meeting observes that the recently approvead
scales. The complementarity of [RHIC and the sPHENIX proposal targets these opportunities by bringing
LHC] is essential to this goal, as is a state-of-the- greatly extended capabilities to RHIC ...
art jet detector at RHIC, called sPHENIX.
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jet structure topical group

Rosi Reed (Lehigh)
Dennis Perepelitsa (Colorado)

CO-Cconveners
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CERN Yellow Report projections for Runs 3, 4
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Fig. 29: (Left Panel) Photon-jet momentum balance z ;. distribution for isolated-photon+jets of p, >
100 GeV/c and [n,| < 1.44, p;ey > 30 GeV/c and 1| < 1.6 in the HL-LHC data (Right Panel).

Comparison between the current performance with 0.4 nb~! of Pb-Pb data collected in 2015 and with

HL-LHC data [8].

CMS photon+jet (above) — c.f. sPH

version (right)

= similar jet low pr reach in bo
(30 GeV vs. 20 GeV), photor

—NIX

'h cases
selection

quite different (>100 GeV vs. > 40 GeV)

= matched cone sizes (
= cxpect sharper xjg distribution at

— smaller IS
effects

R + FS

1=0.3)

R & smaller U

RHIC

1/NY deet/dx

Photon-tagged jets In sSPHENIX

3_5_I [ L L L L L | L | L | L | o I_
B -»-Pythia Truth 5
3F -o-pp Reco.-level _—
: —— -~ AA Reco.-level :
2.5¢ —— 0-20% —
- -+ -
B —— _
1.5¢ Y - :
- —— — R=0.3Jets
- sPHENX T P >20GeV
E simulation e p¥ > 40 GeV E
0'5: T e Ad > 7n/8 -
| —— —— —]
O_I N AN _l__‘.__| | | | AN A ""I—‘—b | =|=E_5_L | gl | |

O 0204 06 08 1 12 14 16 1.8
X,

Updated!

15



Fig. 35: Projection of the statistical precision that can be reached for the ratio of jet fragmentation
functions in Pb—Pb and pp collisions, Rp .y, of jets recoiling from a photon. The left panel shows the
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Fig. 33: Projection of the precision that can be reached for the modification of jet fragmentation function,
Rp(,), measured in jet pr interval 200 — 251 GeV/c. In the left panel the statistical uncertainty on the

measurement with the shaded boxes corresponding to 0.49 nb ' while the vertical bars are for 10 nb ™~ ".
The right panel shows a comparison of R,y with a theory model (see text for more details) [S].
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different min. hadron & jet pr at LHC (>1 GeV,
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but coincidentally similar low-z reach

matched x-axis range & binning, jet cone size, etc
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Alternative UE subtraction methods — constituent subtraction

SPHE
0072~ sPHENIX 007" sPHENIX
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Standard subtraction w/ calo jets can result in Eet < |pjet| due to resolution effects, e.g. mjet?
< O (represented here as miet < 0)

Constituent subtraction has mj.t > O from pos-def. condition

and better mass resolution & m/pr scale
ct. Berta, Spousta, Miller, Leitner, JHEP 1406 (2014) 092 17
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= new observable enabled by constituent mass subtraction
= general conclusion: can pick kinematic regions where UE eftects are small
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Fig. 31: JEWEL simulation of the angular distribution of charged jet yield in the ALICE acceptance for
40 < pCT}fjet < 45 GeV/c and R = 0.4 recoiling from a high-py reference hadron (20 < pr 4y, < 50

GeV/c), for central Pb—Pb collisions at , /sy = 5.02 TeV with 10 nb ™! int. luminosity, and pp collisions

at /s = 5.02 TeV with 6 pb_1 int. luminosity. The recoil jet azimuthal angle A is defined with
respect to the reference axis. The observable shown is ®(A) which incorporates statistical suppression

of uncorrelated background. Figure from Ref. [1].
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heavy flavor/jet topical group

Xin Dong (LBNL)
Jin Huang (BNL) CO-conveners
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DO vq - Direct Access to Initial B Field
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Open HF observables — b-tagged jets, B mesons
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Examples of theory progress connected to sPHENIX activity

SPHE

/-B Kang, J Reiten, | Vitev, B Yoon, “Light and heavy flavor dijet production and dijet mass modification in heavy ion collisions”,
Phys. Rev. D99 034006 (2019) Partly supported by LANL LDRD motivated by and connected to sPHENIX

Increased coupling to the medium near T, < stronger b-dijet effect at RHIC
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Ongoing heavy flavor work with theory community

https://sites.qooqgle.com/Ibl.gov/himvixlbnl2012/home

SPHE

Registration =~ Accommodation
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Model Uncertainty in Bayesian Analysis Feb 28, 2019, LBNL 20/23

» Working with theory group at Duke (Weiyao Ke) to quantify power of sSPHENIX data to constrain

HQ transport parameters
o Model: Linearized Boltzmann with diffusion model (LIDO) [DOI: 10.1103/PhysRevC.98.064901]
o Bayesian fit to sSPHENIX projected uncertainties of B and D meson R, and v,
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https://sites.google.com/lbl.gov/hfmvtxlbnl2019/home

quarkonia topical group

Marzia Rosati (ISU)
Tony Frawley (FSU) CO-CONVENers
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Upsilons at sSPHENIX and LHC

SPHE
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Differential suppression of Y(nS), temperature dependence of QGP Debye
screening length Updated!

Y(1S) width key f.o.m. in work of Inner Detector Optimization Task Force —
deciding INTT configuration (pattern recognition vs. radiative tails and conversions)
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Detailed balance affected by
dissociation, strong energy loss of
bare HQ, recombination

See X. Yao, B. Mueller, arXiv:1811.09644

1.0
0-60% — 15, theory
1S, syst
0.3 Xiaojun Yao (Duke) at ¢ 1S, stat
2019 RHIC AUM — model — 25, theory
0.64 |compared with STAR data
<
- e S
0.4 ?
0.2
0.0 ,
2 4 6
pT(GeV)

Quarkonium in the medium — recent work H@

Following discussions with sPHENIX collaborators
X.Yao generated projections in sSPHENIX acceptance
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cold QCD topical group

Christine Aidala (Mlchigan)
Sasha Bazilevsky (BNL) CO-conveners
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Central Barrel Opportunities

SPHE

Updated!
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https://indico.bnl.gov/event/3866/

Forward Arm Physics
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https://indico.bnl.gov/event/3867/
https://arxiv.org/search/hep-ph?searchtype=author&query=Helenius%2C+I
https://arxiv.org/search/hep-ph?searchtype=author&query=Lajoie%2C+J
https://arxiv.org/search/hep-ph?searchtype=author&query=Osborn%2C+J+D
https://arxiv.org/search/hep-ph?searchtype=author&query=Paakkinen%2C+P
https://arxiv.org/search/hep-ph?searchtype=author&query=Paukkunen%2C+H
https://arxiv.org/abs/1904.09921

Strong potential of forward upgrades for sSPHENIX

SPHE
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Continued EIC-focused enthusiasm and work in the collaboration

I am therefore asking you to establish a detector study group
consisting of members of the sSPHENIX Collaboration and
other individuals interested in EIC science from outside the
sPHENIX Collaboration to update the Letter of Intent for an
EIC detector built around the BaBar solenoid in the context of
the eRHIC pre-CDR. The Letter of Intent should contain an
outline of the expected physics program for the detector in the
first five years of running, using estimates of the luminosity
development anticipated for initial EIC operation.

In parallel, I am asking you to perform a cost estimate of the
construction costs in FY2018 dollars. This estimate should be
performed with the methodology that the NPP Director for
Project Planning and Oversight of Accelerator Projects, Diane
Hatton, has developed for the EIC and that Elke Aschenauer
and her group are using to develop a cost estimate for a
generic EIC detector in conjunction with the ongoing pre-CDR
cost estimation process. Please, do not include the cost
estimate in the updated Letter of Intent, but transmit it as a
separate document.

A brief presentation on the physics capabilities of the detector
should be prepared for the PAC meeting in June 2018. After
receiving comments from the PAC, I expect to be able to
provide feedback and further guidance with respect to the
process and goals of developing the updated Lol. The final
versions of the revised Lol and the associated cost estimate
should be submitted to me by September 30, 2018. The NPP
Director for Project Planning and Oversight of Detector
Projects, Maria Chamizo Llatas, will then convene a review
with external experts, as appropriate.

charge from ALD

C
C

- effort coordinated and led by
<PHE

conveners Christine Aidala
(Michigan), Nils Feege (SUNYS

+ updated studies of detector
performance and capabilites

eliberate choice: follow closely the
esign in 2013 LOI (arXiv:1402.1209)

PHENIX cold QCD topical group

5)

SPHE

sPHENIX-note sPH-cQCD-2018-001

An EIC Detector Built Around The
SPHENIX Solenoid

A Detector Design Study

Christine Aidala, Alexander Bazilevsky, Giorgian Borca-Tasciuc, Nils Feege, Enrique
Gamez, Yuji Goto, Xiaochun He, Jin Huang, Athira K V, John Lajoie, Gregory
Matousek, Kara Mattioli, Pawel Nadel-Turonski, Cynthia Nunez, Joseph Osborn,
Carlos Perez, Ralf Seidl, Desmmond Shangase, Paul Stankus, Xu Sun, Jinlong Zhang

For the EIC Detector Study Group
and the sPHENIX Collaboration

October 2018

Updated!
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Developments on many fronts since last PAC

=PHE

Progress on the collaboration [ S
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Compelling physics, future potential = strong collaboration H@

- Currently 77 institutions, 17 have joined since collaboration formed in
December 2015

- Adding institutions with world-class expertise in relevant physics, silicon,
TPCs, calorimetry, electronics, computing

- Concluding survey of institutional board members to update current roster of
collaborators

- \Very positive contributions across wide spectrum of institutions — hosting

collaboration meetings, workshops, regional meetings (e.g., SPHENIX meeting
in Asia, March 2019, hosted by NCU)

+Additional expressions of interest from strong institutions In Asia and Europe
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lask forces — key interactions of sSPHENIX project and science H@

INnner detector optimization TF — concluded its work and recommended

number of INT T layers — very complex interplay of pattern recognition, impact
on Upsilons, service routing, carbon fiber structure design -

- Computing TF (Chair: Ron Soltz (LLNL)) —
describe computing model, determine needed resources

- Calibration TF (Co-chairs: Christof Roland (MIT),
Takao Sakaguchi (BNL)) — articulate a strategy for obtaining
initial and continuing calibrations of sSPHENIX detectors,

strong interplay with Computing TF

Upcoming sPHENIX/ALICE TPC calibration workshop July 11-12 at CERN
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On our radar screens ...

NSF/sPHENIX news from last week ...

MR proposal to instrument the inner HCal not funded.
Collaboration is exploring all options to fund IHCA

iInstrumentation; window Iin which to realize suitable funding
within constraints of MIE schedule is challenging

Relativistic Heavy lon Collider”

May 1, 2019 formation in BNL Physics

Department of HEP/NP

Megan Connors (GSU) awarded CAREER grant for proposal “Jet
Measurements and a Novel Hadronic Calorimeter at the

software group headed by Torre Wenaus is the identified resource

for any add’l BNL computing effort for s

- Very new arrangement — potentially be

priorities would have to align with s

PH
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Summary

o
+ Progress toward realizing full baseline sPHENIX detector very encouraging — very
successful PD-2/3 review Is a key part of that.

- All topical groups have been very active developing new observables and updating
projections, engaging the broader experimental and theory community

+ Continued enthusiasm for science enabled by forward instrumentation in conjunction
with capabilities of SPHENIX barrel and high rate DAQ

- EIC detector design study update latest addition to extensive studies of SPHENIX as
foundation for highly capable detector

+ Collaboration continues to grow, adding strong institutions with relevant science and
technical expertise

+Assessing recent news about NSF MRI proposal; relying on new BNL software group
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Design and Beam Test Results for the sSPHENIX
Electromagnetic and Hadronic
Calorimeter Prototypes
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Abstract—The super Pioneering High Energy Nuclear Inter-
action eXperiment (SPHENIX) at the Relativistic Heavy Ion
Collider will perform high-precision measurements of jets and
heavy flavor observables for a wide selection of nuclear collision
systems, elucidating the microscopic nature of strongly inter-
acting matter ranging from nucleons to the strongly coupled
quark-gluon plasma. A prototype of the sPHENIX calorime-
ter system was tested at the Fermilab Test Beam Facility as
experiment T-1044 in the spring of 2016. The electromagnetic
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calorimeter (EMCal) prototype is composed of scintillating fibers
embedded in a mixture of tungsten powder and epoxy. The
hadronic calorimeter (HCal) prototype is composed of tilted steel
plates alternating with the plastic scintillator. Results of the test
beam reveal the energy resolution for electrons in the EMCal
is 2.8% @ 15.5% /~/E and the energy resolution for hadrons in
the combined EMCal plus HCal system is 13.5% & 64.9% /v E.
These results demonstrate that the performance of the proposed
calorimeter system satisfies the sSPHENIX specifications.

Index Terms— Calorimeters, electromagnetic calorimetry,
hadronic calorimetry, performance evaluation, prototypes, Rel-
ativistic Heavy Ion Collider (RHIC), silicon photomulti-
plier (SiPM), simulation, “Spaghetti” Calorimeter (SPACAL),
super Pioneering High Energy Nuclear Interaction eXperiment
(sPHENIX).

I. INTRODUCTION

HE super Pioneering High Energy Nuclear Interaction

eXperiment (SPHENIX) is a planned experiment [1] at
the Relativistic Heavy Ion Collider (RHIC). RHIC is a highly
versatile machine that collides a diverse array of nuclear
beams from protons to heavy ions and supports a very
broad physics program for the study of both hot and cold
quantum chromodynamics matter. SPHENIX is specifically
designed for the measurements of jets, quarkonia, and other
rare processes originating from hard scatterings to study
the microscopic nature of strongly interacting matter rang-
ing from nucleons [2] to the strongly coupled quark—gluon
plasma (QGP) created in collisions of gold ions at \/syy =
200 GeV [3]-[6]. sSPHENIX is equipped with a tracking sys-
tem and a three-segment calorimeter system, both of which
have a full 27 acceptance in azimuth and a pseudorapidity
coverage of |57| < 1.1. sSPHENIX has acquired the former
BaBar magnet, which has an inner radius of 1.4 m and
an outer radius of 1.75 m [7]. The sPHENIX calorimeter
system includes an electromagnetic calorimeter (EMCal) and
an inner hadronic calorimeter (HCal), which sit inside the
solenoid, and an outer HCal located outside of the magnet.
The EMCal will be used for identifying photons, electrons, and
positrons. Photons can be used to tag the energy of opposing
jets traversing the QGP, while electrons and positrons will

0018-9499 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

First peer-reviewed sPHENIX paper

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Multi-year run plan for sPHENIX ﬁ

Year | Species | Energy |GeV| | Phys. Wks | Rec. Lum. | Samp. Lum. | Samp. Lum. All-Z
® Year-1 | Au+Au 200 16.0 7 nb! 8.7 nb™! 34 nb™! -
Year-2 | p+p 200 11.5 — 48 pb L 267 pb 3
Year-2 | p+Au 20C 11.5 — 0.33 pb~! 1.46 pb~! 3
® | Year-3 | Aut+Au 20C 23.5 14 nb~1 26 nb! 88 nb! .
Year-4 | p+p 200 23.5 — 149 pb~! 783 pb~! | 3
® | Year-5 | AutAu 200 23.5 14 nb ! 48 b 92 nb ! 3

https://indico.bnl.gov/event/4 788/attachments/19066/24594/sph-trg-000 0614201 8.pdf

@® Minimum bias Au+Au at 15 kHz for primary vertex Izl < 10 cm (in acceptance of silicon trackers):

47 billion (Year-1) + 96 billion (Year-3) + 96 billion (Year-5) = 240 billion events recorded

]- ~40x more
« cf. STAR 2016 200 GeV Au+Au data set of 6.5 billion events [PAC 2017 presentation]

« Topics with Level-1 selective trigger (e.g. high pt photons) can sample 0.5 trillion events within Izl < 10 cm

Ongoing discussions with C-AD to optimize RHIC running for sPHENIX 41



O-Yr vs. 3-yr
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O-Yr vs. 3-yr
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From this morning’s session at SQM’19

\(D%4D)

(Ac+A,

SPHE

A in Pb-Pb collisions &

ALICE

- _ —@— sPHENIX proj: ideal TOF, 0-10% :
- Au+Au, |5\ =200GeV —o— SPHENIX proj: noPID, 0-10% pp, p-Pb, 30-50% Pb-Pb, 0-10% PbPb C. Zampolli
- —— STAR prel., 0-20% e e e e T T S S A S S
B Tsinghua: seq. coal, 10-80% + o 0.9F ALICE Preliminary 4 se L ALICE Preliminary }
i Tsinghua: simul. coal, 10-80% < o.8F- Vsyy =5.02TeV, lyl <0.5 3 <25 0-10% Pb-Pb, |5,y = 5.02 TeV —
i SRR Catania: coal only, 0-20% E - - lyl <05 ]

P N Catania: coal+frag, 0-20% 0.75 —e— 0-10% Pb-Pb = ol ]
i E -.--- TAMU: di-quark 0-5% 0.6 - —=— 30-50% Pb-Pb B B —e— data | ]
— R v N e TAMU: 3-quark 0-5% ' g op g B Catan!a, fragm.+coal. 7
- "‘,« C’ ~...~' -.-.. PYTHIAS (CR) 0.5:_ 4+ p-Pb,-096<y <0.04 E 1 5__ -------- Catania, coal. —
B “¢" ~'~' """ PYTHIA8 (MonaSh) 04:_ _: B i
o l T ~ E E __ Filled markers: pp measured reference __
ST T C’ ... O 3:_ _: : Open markers: pp pT-extrapoIated reference :
- ________ e | ® 02F E - —
= - ":,‘—""‘:— o JRRE DN :~:f:.~ C’ R ... 01:_ Filled markers: pp measured reference _: B ]
. - _:::. s C’ ‘o, - E Opeln marklers: ppIpT-extrlapoIateld referTnce | | | | | | E | | | | | | | I I ; | I I |
e T 0 10 20 0 10 20
IR R e eirimin e p_ (GeV/c) p. (GeV/c)

------- Bl Ee e Lttt Lk Kkt
2 4 6 8 « Hint of higher A_*/D° ratio in 0-10% Pb-Pb collisions w.r.t. pp collisions

Transverse Momentum P, (GeVic) * More precision needed to imagine a trend from pp to p-Fb to Pb-Pb

* Understanding of pp data is fundamental: not granted that A_* is "enhanced” in
the same way in Pb-Pb and pp (w.r.t. e*e’)
« A_IDO ratio in Pb-Pb collisions described by Catania model including both
coalescence and fragmentation catania: s. Plumari EPJC (2018) 78: 348

A. Rossi, Padua INFN
2019

Strangeness in Quark Matter, 10-15 June 2019, Bari 28
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