Low Energy RHIC electron Cooling (LEReC):

Status and Commissioning Progress

Alexei Fedotov on behalf of the LEReC team

BNL NPP 2019 PAC Meeting June 10, 2019

LEReC Project Overview

The goal of the LEReC project is to provide luminosity improvement for RHIC operation at low energies to search for the QCD critical point.

LEReC is first RF linac-based electron cooler (bunched beam cooling).

To provide luminosity improvement with such new approach requires:

- □ Building and commissioning of new state of the art electron accelerator ✓
- □ Produce electron beam with beam quality suitable for cooling ✓
- □ RF acceleration and transport maintaining required beam quality ✓
- ❑ Achieve required beam parameters in cooling sections ✓
- □ Commissioning of bunched beam electron cooling ✓
- Commissioning of electron cooling in a collider (in process)

RHIC @ BNL, Long Island, New York

LEReC electron accelerator

(100 meters of beamlines with the DC Gun, high-power fiber laser, 5 RF systems, including one SRF, many magnets and instrumentation)

5

LEReC cooling sections

LEReC electron beam parameters

Electron beam requirement for			
Kinetic energy, MeV	1.6	2	2.6
Cooling section length, m	20	20	20
Electron bunch (704MHz) charge, pC	130	170	200
Effective charge used for cooling	100	130	150
Bunches per macrobunch (9 MHz)	30	30	24-30
Charge in macrobunch, nC	4	5	5-6
RMS normalized emittance, um	< 2.5	< 2.5	< 2.5
Average current, mA	36	47	45-55
RMS energy spread	< 5e-4	< 5e-4	< 5e-4
RMS angular spread	<150 urad	<150 urad	<150 urad

Alexei Fedotov, BNL NPP 2019 PAC Meeting, June 10, 2019

Bunched beam electron cooling for LEReC

- Electron bunches suitable for cooling are generated by illuminating a multi-alkali (CsK₂Sb) <u>photocathode inside the high-voltage DC Gun</u> with green light using high-power laser (high-brightness in 3D: both emittances and energy spread).
- The 704MHz fiber <u>laser produces required modulations</u> to overlap ion bunches at 9MHz frequency with <u>laser pulse temporal profile shaping</u> using crystal stacking.
- Such electron <u>bunches are accelerated using 704MHz SRF cavity</u>. RF gymnastics (several RF cavities) is employed to achieve energy spread required for cooling. Electron beams of required quality are delivered to cooling sections.
- <u>Electron bunches overlap only small portion of ion bunch</u>. All ion amplitudes are expected to be cooled as a result of synchrotron oscillations of ions.

LEReC beam structure in cooling section

Alexei Fedotov, BNL NPP 2019 PAC Meeting, June 10, 2019

Attainment of "cold" electron beam suitable for cooling

- LEReC is based on the state-of-the-art accelerator physics and technology:
- Photocathodes: production and delivery system
- High power fiber laser and transport
- Laser beam shaping to produce electron bunches of required quality
- Operation of DC gun at high voltages (around 400kV) with high charge and high average current
- RF gymnastics using several RF cavities and stability control
- Energy stability and control
- Instrumentation and controls

Transverse phase space measurements of electron beam

Longitudinal phase space measurement of electron beam

First dogleg merger dipole is off

Beam goes to RF diagnostic line

Deflecting cavity produces time

20 degree dipole produces

dependent vertical kick

6 macro-bunches, 3 nC each.

dispersion

In pulsed mode, subsequent electron macro-bunches have lower energy due to beam loading in RF cavities.

1 macro-bunch of electrons (total charge 3nC)

LEReC: First observation of electron cooling using bunched electron beam, April 5, 2019

Simultaneous cooling in Yellow and Blue rings (76kHz mode, 6 ions bunches: bunch #1 is being cooled; bunch #6 does not see electrons)

Simultaneous cooling (in Yellow and Blue RHIC rings, 6 bunches in each) using high-current 9 MHz CW electron beam

Potential benefits from cooling

- Cooled bunch is kept shorter, more useful events within trigger window
- Minimize ion beam de-bunching and losses from the RF bucket
- Peak current significantly higher for cooled bunch
- Emittance cooling with possible reduction • of beta-function at collisions

File Window Markers Analysis

14.10.00

5.0E+8

4.0E+8

3.0E+8

2.0E+8 1.0E+8 lifetime

14:15:00 14:20:00 14:25:00 14:30:00 14:35:00 14:40:00 14:45:00

bluBunchCharge_003

bluBunchCharge_006

- - 1

BLUE

14:50:00 14:55:00 15:00:00 15:05:00

LEReC roadmap to cooling

- Production of 3-D high-brightness electron beams \checkmark
- RF acceleration and transport of electron bunches maintaining "cold" beam ✓
- Control of various contributions to electron angles in the cooling section to a very low level required for cooling ✓

Cooling commissioning milestones:

- Demonstrated first electron cooling using bunched electron beams \checkmark
- Demonstrated cooling in 6-D✓
- Matched electron and ion energy in both Yellow and Blue RHIC rings✓
- Cooling was achieved in both Yellow and Blue Rings simultaneously using the same electron beam
- Demonstrated longitudinal and transverse cooling of several ion bunches (high-current 9MHz CW e-beam operation) simultaneously ✓
- Cooling in both Yellow and Blue RHIC rings simultaneously using CW electron beam ✓

LEReC timeline and integration with RHIC Physics (unchanged, as presented in 2015)

					1	5		
	FY2015	2016	2017	2018	2019	2020	2021	2022
design and construction								
Installation								
hardware commissioning								
e-beam commissioning								
cooling commissioning					intorlogyod			
physics operation					mien	eaveu	contin	gency

- Installation is complete
- Hardware commissioning is complete
- Commissioning of electron accelerator at 1.6 MeV is complete
- Bunched electron beam cooling commissioned

Present focus is on operational aspects of e-cooling in RHIC

todav

LEReC Physics integration: BES-II required events

			1			
center-of-mass energy $\sqrt{s_{NN}}$	GeV	7.7	9.1	11.5	14.6	19.6
events BES-I, actual	Μ	4.3		11.7	24	36
events BES-II, min goal	Μ	80	100	150	200	300
events BES-II, full goal	Μ	100	160	230	300	400
		L	!			

General strategy to maximize integrated luminosity:

- Cooling at the 2 lowest energies, no cooling at the 3 highest energies
- Started BES-II at highest energies (machine ready w/o cooling)
- Interleave cooling commissioning with physics operation
- Finish BES-II at lowest energies (largest gain in L_{avg} and time)

Summary

- We designed, built and commissioned state-of-the-art electron accelerator LEReC which provides beam quality suitable for electron cooling using bunched electron beams.
- Electron cooling using bunched electron beams based on the RF acceleration was successfully demonstrated.
- Such cooling approach is new (previous electron coolers all used DC beams), and opens the possibility of electron cooling at high beam energies.
- Cooling of ion bunches in both RHIC rings simultaneously using the same electron beam was successfully demonstrated.
- An optimization of cooling and effects on ion beam lifetime is in progress.
- The next step will be to show that the cooling enhances collision rates in next year's RHIC low-energy collisions.

Acknowledgement

LEReC project greatly benefits from help and expertise of many people from various groups of the Collider-Accelerator and other Departments of the BNL.

As well as FNAL, ANL, JLAB and Cornell University.

Thank you!

Alexei Fedotov, BNL NPP 2019 PAC Meeting, June 10, 2019