

Helen Caines - Yale - on behalf of the STAR Collaboration

2

STAR's highest priority is the collection of the remaining BES-II data

Beam Energy	$\sqrt{s_{NN}}$	$\mu_{\rm B}$	Run Time	Number Events	Status
(GeV/nucleon)	(GeV)	(MeV)			
9.8	19.6	205	4.5 weeks	400M	Run-19 (finished)
7.3	14.6	260	5.5 weeks	$300\mathrm{M}$	Run-19 (finished)
8.35	16.7	235	5 weeks	$250\mathrm{M}$	
5.75	11.5	315	9.5 weeks	$230\mathrm{M}$	LEReC availability? ¹
4.55	9.1	370	9.5 weeks	160M	
3.85	7.7	420	12 weeks	100M	
31.2	7.7 (FXT)	420	2 days	100M	Run-19 (scheduled)
9.8	4.5 (FXT)	589	2 days	100M	Run-19 (scheduled)
7.3	3.9 (FXT)	633	2 days	100M	Run-19 (scheduled)
19.5	6.2 (FXT)	487	2 days	$100\mathrm{M}$	
13.5	5.2 (FXT)	541	2 days	100M	
5.75	3.5 (FXT)	666	2 days	100M	
4.55	3.2 (FXT)	699	2 days	100M	
3.85	3.0 (FXT)	721	2 days	$100\mathrm{M}$	

¹ At the time of this writing, the availability of LEReC for the 11.5 GeV energy is not clear. Consequently, the run time for this energy is changed from last year's BUR. The new estimate is based on the 14.6 GeV performance in Run-19. A more optimistic estimate, based on the 19.6 GeV performance, would be 7.5 weeks.

Executive Summary

Additionally, the STAR collaboration proposes a

small system run to study the emergence of collectivity and the mechanism for early-time *hydrodynamization* in large collisions systems.

BES-II will dramatically enhance our understanding of the QCD phase diagram. The proposed program involves dedicated low beam energy running and high precision measurements of the observables which have been proposed as sensitive to the phase structure of QCD matter. In addition to the five lower collider energies that have been put forward in past BURs, STAR proposes a sixth collider beam energy at $\sqrt{s_{\rm NN}} = 16.7$ GeV. These data will provide for a finer scan in a range where the energy dependence of the net-proton kurtosis and neutron density fluctuations appears to undergo a sudden change.

0+0	200 GeV	400 M minbias, 200 M Central	(1 week)
Au+Au	16.7** GeV	250 M minbias	(5 weeks)

** Discussions with C-AD since BUR submission indicate 17.1 GeV is preferred. This change does not affect STAR's physics goals, so we are changing our request to 17.1 GeV

The Case for Continuing BES-II

FAR

The BES-II Upgrades

Run-19 Progress Report

hours_perday_mb_hlt_good.txt

Helen Caínes - PAC - June 2019

Time

6

EPD: Enhanced Event Plane Resolution

All tiles operational for Run-18 and Run-19 : 2.1 < $|\eta|$ < 5.1

Helen Caínes - PAC - June 2019

7

iTPC: Enhanced Acceptance

8

Successfully integrated into data-taking since day 1 of Run-19

Passed DoE close-out review All KPP and UPPs met or passed

Demonstrated improvement:

Helen Caínes - PAC - June 2019

eTOF: Beam Loss Induced Damage

Loss of yellow beam causes instantaneous high current in readout electrode and power supply in turn caused HV trip

Hypothesis: beam loss events \rightarrow high flux of particles \rightarrow induced high current in very short time in readout electrodes \rightarrow damaged PADI input stage

More damaged channels on USTC counters than Tsinghua counters

- due to larger E-field energy (~30% more at operating voltage)
- Threshold behavior in channel destruction
 - Distinct pattern of damaged channels is visible on USTC counters
 - Not all beam loss events caused damage

eTOF: Avoiding Future Damage

- Replace all PADI preamplifier boards
 - New preamplifier boards have protection diode (ESD 113-B1)
 - Prototype boards exist and are being tested

- Change gas mixture to include 1% SF6
- Ramp to full voltage only after both beams are stable
- Lower standby voltage

eTOF: Preparing for Run-20 and Run-21

Run-19 commissioning highlighted critical issues with stable collider operations

Hardware \rightarrow exchange all PADI boards and GBTx back-planes in Fall 2019

- improved overload protection
- improved clocking scheme with more flexibility
- extended slow control features (temp, on board voltages)
- Firmware \rightarrow development ongoing based on experience gained from eTOF and miniTOF during run 2019
 - improve DAQ stability (noisy channel handling)
 - eliminate data losses under high local rate conditions
- Software \rightarrow improve and test with Run-18 and Run-19 data
 - handling of clock cycle jumps on data calibration level
 - usage of pulser data for phase stability monitoring and correction

Time line

- now PADI boards ordered
- End of July Return of module 18.1 to Heidelberg
- End of Sept PADI boards available and tested
- Beg of Oct New GBTx back-planes available and tested
- Oct/ Nov Maintenance work at BNL (~3 weeks on-site)
- afterwards Commissioning

eTOF can provide expected timing and PID

Cosmic Commissioning

Fully commissioned iTPC prior to BES-II data taking

Helen Caines - PAC - June 2019 13

Cosmic Examples

$Au+Au \sqrt{s_{NN}} = 14.6 \text{ GeV}$

 1 In 2014, collisions were run at a collider energy of 14.546 GeV, which was rounded to 14.5 GeV. This year, we are running at a slightly different energy, 14.618 GeV, which is rounded to 14.6 GeV.

Continuous Data QA

Data QA occurs: On shift while data being taken, via fast offline reconstruction QA shift, HLT monitoring and weekly meeting of detector and PWG experts

Issues rapidly identified, fast feedback to C-AD and/or shift crew

2 plots from a weekly QA meeting

Helen Caínes - PAC - June 2019 17

$Au+Au \sqrt{s_{NN}} = 3.9 \text{ GeV: FXT test}$

Quick test during LEReC operations

Data taking for 1 hr recorded ~4M good events Trigger effic. 90%

Clear PID, including heavy fragments

Confident can trigger and collect data requested

1500

1000

500

200 –150 –100 –5

200

150

VertexZ (cm)

Remainder of Run-19

19

Au+Au 7.7 GeV (collider mode)

STAR: Commissioning for Run-20 LEReC: commissioning during real physics running

Run until ~June 20th

starEventTrigger.rate - HLT good

Remainder of this year's run: FXT at 3.85, 4.55, 7.3, and 31.2 GeV Au+Au 200 GeV collider

during RHIC APEX

STAR BES-II (projected) Performance

STAR

 Table 9: Achieved and projected experiment performance criteria for the BES-II collider program.

Collision Energy (GeV)	7.7	9.1	11.5	14.5	16.7*	* 19.6	27
Performance in BES-I							
Good Events (M)	4.3	NA	11.7	12.6	NA	36	70
Days running	19	NA	10	21	NA	9	8
Data Hours per day	11	NA	12	10	NA	9	10
Fill Length (min)	10	NA	20	60	NA	30	60
Good Event Rate (Hz)	7	NA	30	17	NA	100	190
Max DAQ Rate (Hz)	80	NA	140	1000	NA	500	1200
Performance in BES-II							
(achieved or projected $)$							
Required Number of Events	100	160	230	300	250	400	NA
Achieved Number of Events	TBD	TBD	TBD	324	TBD	580	560
fill length (min)	20	30	40	45	50	60	120
Good Event Rate (Hz)	20-33	33-53	60-80	160	245	400	620
Max DAQ rate (Hz)	125	160	250	800	1300	1800	2200
Data Hours per day	12	14	15	10	15	11	9
weeks to reach goals	16-10	14 - 8.5	10.2 - 7.6	9.5	2.7	5.3	4.0

Projection ranges from optimistic/pessimistic assumptions

Below injection energy luminosity scales with γ^3

**17.1 GeV

Helen Caines - PAC - June 2019

20

Ratio of light nuclei yields sensitive to neutron relative density fluctuations Neutron relative density fluctuations increase near CP and/or 1st order PT

$$\Delta(n) = \langle (\delta n)^2 \rangle / \langle n \rangle^2$$
$$= \frac{1}{g} \frac{N_t \times N_p}{N_d^2} - 1$$

Clear non-monotonic energy dependence

Sudden drop below 19.6 GeV - Consistent with NA49 Second peak?

Note: 14.5 GeV and triton data are new

Case for $Au+Au \sqrt{s_{NN}} = 17.1 \text{ GeV}$

Table 10: Event statistics (in millions) needed in a Au+Au run at $\sqrt{s_{\text{NN}}} = 16.7$ GeV for fourth order net-proton fluctuations ($\kappa\sigma^2$) and neutron density fluctuation (Δn) measurements.

Triggers	Minimum Bias	Net-proton $\kappa \sigma^2$ (0-5% Cent.)	$\Delta n \ (0-10\% \ {\rm Cent.})$
Number of events	$250 \mathrm{M}$	6% error level	3.6% error level

Initial State Correlations (ISM) or Final State Interaction (FSM) in p+A?

If FSM: is collectivity fluid-like or off-equilibrium few scatterings?

[1] http://www.int.washington.edu/talks/WorkShops/int_19_1b/People/Mace_M/Mace.pdf [2] https://indico.cern.ch/event/771998/contributions/3339235/subcontributions/276910/ attachments/1813022/2961981/talk_smallsystems_SHEN.pdf

Helen Caínes - PAC - June 2019

Case for O+O $\sqrt{s_{NN}}$ = 200 GeV

v₂: asymmetric systems behave differently to symmetric systems v₃: all systems behave similarly

If system driven by ISM: signals smaller with increasing system size

Potential to constrain transport vs hydro

Case for O+O $\sqrt{s_{NN}}$ = 200 GeV

v₃: Energy invariance for symmetric heavy systems v₃: Energy dependence for asymmetric systems

What about small symmetric systems?

Helen Caínes - PAC - June 2019

Mind the Gap

- Why Oxygen and why now?:
- Better control of N_{part} and ε_n than in peripheral Au+Au
- Larger acceptance from BES-II upgrades, better control of non-flow Synergy with LHC Evidence of jet quenching?

Run-20: 28 Cryo-weeks

27

Table 2: Proposed Run-20 assuming <u>28 cryo-weeks</u>, including five weeks of LEReC commissioning, an initial one week of cool-down and a one week set-up time for each collider energy.

Single-Beam	$\sqrt{s_{NN}}$	Run Time	Species	Events	Priority	Sequence
Energy (GeV/n)	(GeV)			(MinBias)		
5.75	11.5	9.5 weeks	Au+Au	230M	1	1
4.55	9.1	9.5 weeks	Au+Au	160M	1	3
19.5	6.2 (FXT)	2 days	Au+Au	100M	2	5
13.5	5.2 (FXT)	2 days	Au+Au	$100\mathrm{M}$	2	6
5.75	3.5 (FXT)	2 days	Au+Au	$100\mathrm{M}$	2	2
4.55	3.2 (FXT)	2 days	Au+Au	$100\mathrm{M}$	2	4
3.85	3.0 (FXT)	2 days	Au+Au	$100\mathrm{M}$	2	7
100	200	$1 \operatorname{wool}^2$	$O \downarrow O$	400M	2	0
100	200	I WEEK		200M (central)	J	0

² Available run time for the proposed small system run using O+O will directly depend on the the run time for the 11.5 GeV system. In the case the combined performance of C-AD and STAR resembles that of last year's 19.6 GeV data set, then approximately 2 cryo-weeks would be available to complete the small system program.

Top priority: Collider program and commissioning of LEReC (5 weeks) - impact on yet to come 7.7 GeV running

Run-20: 24 Cryo-weeks

Table 3: Proposed Run-20 assuming 24 cryo-weeks, including three to four weeks of LEReC commissioning, an initial one week of cool-down and less than one week set-up time for each collider energy.

Single-Beam	$\sqrt{s_{NN}}$	Run Time	Species	Events	Priority	Sequence
Energy (GeV/n)	(GeV)			(MinBias)		
5.75	11.5	7.5 weeks^3	Au+Au	230M	1	1
4.55	9.1	9.5 weeks	Au+Au	160M	1	3
19.5	6.2 (FXT)	2 days	Au+Au	100M	3	5
13.5	5.2 (FXT)	2 days	Au+Au	100M	3	6
5.75	3.5 (FXT)	2 days	Au+Au	100M	2	2
4.55	3.2 (FXT)	2 days	Au+Au	100M	2	4
3.85	3.0 (FXT)	2 days	Au+Au	100M	3	7

³ In this 24 cryo-week scenario an optimistic view on the performance of the 11.5 GeV run is presumed, based on combined performance of C-AD and STAR resembling that of last year's 19.6 GeV run.

Top priority: Collider program and commissioning of LEReC (3-4 weeks) - impact on yet to come 7.7 GeV running

Optimistic projection for the non-cooled 11.5 GeV and e-cooled 9.1 GeV - FXT could be finished in Run-21 along with O+O running

Run-21: 20 Cryo-weeks

29

Single-Beam	$\sqrt{s_{NN}}$ (GeV)	Run Time	Species	Events	Priority	Sequence
Energy (GeV/n)	·			(MinBias)		
3.85	7.7	12 weeks	Au+Au	100M	1	1
8.35	16.7	5 weeks	Au+Au	$250\mathrm{M}$	2	2
100	200**	1 week^4	O+O	400M 200M (central)	2	3

⁴ In the case the proposed small system run can not take place in Run-20, the cryo-week budget for Run-21 could potentially permit this run to take place depending on the Run-20 LEReC performance.

Top priority: Completion of BES-II

Bulk of running dedicated to 7.7 GeV Time estimate will be refined as Run-19 and Run-20 continue

New Requests: Au+Au at 17.1 GeV (collider data) O+O at 200 GeV

Summary

STAR's highest priority requests Run-20 & Run-21: completion of BES-II Run-22: p+p 500 GeV - next talk by Jim D

Significant progress towards this goal made in Run-19 iTPC and EPD working beyond expectations eTOF commissioning progressing, improvements planned for Run-20

Request to add Au+Au at 17.1 GeV to BES-II program Probing potential "double bump" signals

Request for short O+O (small system) run at 200 GeV Good control of geometry for comparison to p+A data

Beyond BES-II Run-22: p+p 500 GeV Co-running with sPHENIX

Depending on pending results: Further Isobar, BES, small system running Helen Caine

BACK UP

Event statistics requirements: Collider

STAR

Table 7: Event statistics (in millions) needed in the collider part of the BES-II program for variousobservables. This table updates estimates originally documented in STAR Note 598.

Collision Energy (GeV)	7.7	9.1	11.5	14.5	19.6
$\mu_{\rm B}$ (MeV) in 0-5% central collisions	420	370	315	260	205
Observables					
R_{CP} up to $p_{\mathrm{T}} = 5~\mathrm{GeV}/c$	-	-	160	125	92
Elliptic Flow (ϕ mesons)	80	120	160	160	320
Chiral Magnetic Effect	50	50	50	50	50
Directed Flow (protons)	20	30	35	45	50
Azimuthal Femtoscopy (protons)	35	40	50	65	80
Net-Proton Kurtosis	70	85	100	170	340
Dileptons	100	160	230	300	400
$>5\sigma$ Magnetic Field Significance	50	80	110	150	200
Required Number of Events	100	160	230	300	400

Typically factor 20 more than for BES-I

dileptons drive the event request

Event statistics requirements: FXT

Table 8: Event statistics (in millions) needed in the fixed-target part of the BES-II program for various observables.

$\sqrt{s_{NN}}$ (GeV)	3.0	3.2	3.5	3.9	4.5	5.2	6.2	7.7
Single Beam Energy (GeV)	3.85	4.55	5.75	7.3	9.8	13.5	19.5	31.2
$\mu_{\rm B}~({ m MeV})$	721	699	666	633	589	541	487	420
Rapidity y_{CM}	1.06	1.13	1.25	1.37	1.52	1.68	1.87	2.10
Observables								
Elliptic Flow (kaons)	300	150	80	40	20	40	60	80
Chiral Magnetic Effect	70	60	50	50	50	70	80	100
Directed Flow (protons)	20	30	35	45	50	60	70	90
Femtoscopy (tilt angle)	60	50	40	50	65	70	80	100
Net-Proton Kurtosis	36	50	75	125	200	400	950	NA
Multi-strange baryons	300	100	60	40	25	30	50	100
Hypertritons	200	100	80	50	50	60	70	100
Requested Number of Events	300	100	100	100	100	100	100	100

Is there a Critical Point?

FXT: energy "upgrade"

Detector upgrades improve STAR PID and acceptance performance, for FXT energies up to 7.7 GeV, overlap energy with the collider mode

BES-II: quark elliptic flow

Precision measurement of the ϕ (and other) flow

Softest point in EOS

37

net-proton directed flow

Recent calculations consistent with original 2005 prediction

JAM 1.0pt: First order phase transition strong "wiggle" JAM X-over - Cross over weaker "wiggle" JAM - No transition no "wiggle"

Theoretical calculations do not yet match data

Fine centrality binning possible with BES-II data

Y.Nara et al. Phys. Lett. B769 (2017) 543

Coalescence of "produced" particles

Assumptions:

- v₁ is developed in prehadronic stage
- Hadrons are formed via coalescence: (v_n)_{hadron} = Σ(v_n)_{constituent quarks}
- $(v_1)_{\bar{u}} = (v_1)_{\bar{d}}$ and $(v_1)_s = (v_1)_{\bar{s}}$

FXT directed flow

 v_1 at 4.5 GeV:

p and Λ similar values First identified π results Suggestion of difference between π⁺ and π Transported quarks have stronger effect on π

Run 18 (with EPD): 1 B events at 7.2 GeV 100 M events at 3.0 GeV

Fluctuation measurements below 7 GeV

39

BES-II: directed flow improvements

Current data: Double sign change of v1

Precision measurement of dv₁/dy as function of centrality

BES-II: Critical fluctuations

Current data: Suggestive of non-trivial \sqrt{s} dependence of net

Low mass di-lepton excess

Above 20 GeV Total baryon density ~ constant Low mass excess \propto fireball lifetime

for large range of beam energies and centralities

Excess driven by convolution of **total baryon** density, **hot dense** medium effects and the medium's **lifetime**

Need to add more low energy data

BES-II: change total baryon number

Low Mass Region:

iTPC: Significant reduction in sys. and stat. uncertainties

Disentangle total baryon density effects

 ρ -meson broadening:

different predictions for di-electron continuum (Rapp vs PHSD) iTPC: Significant reduction in sys. and stat. uncertainties Enables to distinguish between models for √s =7.7-19.6 GeV