STAR BUR 2022: 500 GeV p + p Run

Jim Drachenberg BNL NPP PAC Meeting June 10, 2019

OUTLINE

- Open Questions in Cold QCD
- Timeframe and Vital Stats
- Transversity
- Gluon Helicity
- Summary

STAR Cold QCD results have significant impact!

Open Questions in Cold QCD

Deep and critical questions remain unanswered...

- Limited understanding of how quarks, gluons, and their spins are distributed in space and momentum inside the nucleon.
- How does partonic orbital motion contribute to the proton spin?
- Large transverse spin asymmetries observed at forward angles for inclusive hadron production remain poorly understood.
- Assumptions of universality and factorization for transversemomentum-dependent (TMD) functions probed in p + p collisions need to be tested and their evolution in Q^2 quantified.

Open Questions in Cold QCD

STAR detector post-BES-II well positioned to address many of these questions!

- **Problem:** existing detectors access limited range of $x = p_{parton}/p_{proton}!$
- Full understanding of hadrons and hadronic matter: probe high-*x* **and** low-*x*
 - Most direct access through asymmetric collisions, i.e. $x_1 \gg x_2$
 - Outgoing particles emitted at *far forward angles*

→ STAR Forward Upgrade!

Timeframe and Vital Stats

From the BUR charge...

- In addition, I request presentations on...an update of the physics goals for a short (16 cryo-weeks) forward Spin physics run in FY22 with 500 GeV p + p collisions.
- Follows completion of BES-II
 - Possible last opportunity for extended 500 GeV running at RHIC
- Inaugural physics run with full suite of upgraded forward detectors
 - Very positive feedback from NSF and fully expect to receive funding!
- First p + p run able to exploit capabilities of iTPC, eTOF, and EPD
- Anticipate a total delivered luminosity of 1.2 fb⁻¹
 - Roughly double that of the 2017 run
 - Significantly improve precision of midrapidity measurements
 - Weak boson A_N (Sivers), Collins, IFF, Collins-like, (di)jet A_{LL} , etc.
 - Not shown here for reasons of time

A Surprise from Transverse Single-spin Asymmetries

$$A_{UT} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$
$$d\sigma^{\uparrow(\downarrow)} - \text{cross section for } \textit{leftward}$$
scattering when beam polarization is spin-**up**(down)

Collinear pQCD at leading twist: very small A_{UT}

Sizeable A_{UT} at forward pseudorapidity across a large range of \sqrt{s}

Measurements at RHIC in region where NLO pQCD crosssection provides a reasonable description of the data → Go beyond collinear pQCD at leading twist

 \rightarrow Insight into transverse polarization structure?

Shown results from E704, PLB 261, 201 (1991) STAR, PRL 101, 222001 (2008) STAR, PRD 89, 012001 (2014) PHENIX, PRD 90, 012006 (2014)

Mechanisms for Transverse Single-spin Asymmetries

Transverse Momentum Dependent (TMD) Distributions and FFs

Sivers mechanism: asymmetry in

the jet or γ *production*

D. Sivers, PRD 41, 83 (1990); 43, 261 (1991)

Sensitive to *proton spin*–parton *transverse motion* correlations (needs orbital motion) Collins mechanism: asymmetry in

the jet *fragmentation*

J. Collins, NP B396, 161 (1993)

Twist-3 Distributions and FFs

Asymmetry from multi-parton correlation functions

e.g. Qiu and Sterman, PRL 67, 2264 (1991); PRD 59, 014004 (1998)

Correlators closely related to $k_{T}\ \mathrm{moments}\ \mathrm{of}\ \mathrm{TMD's}$

Boer, Mulders, Pijlman, NPB 667, 201 (2003)

Complete understanding of nucleon structure requires knowledge of

- Unpolarized PDF, f(x)
- Helicity PDF ($\Delta f(x)$)
- Transversity $(h_1(x) \text{ or } \delta q(x))$ chiral odd \rightarrow requires another chiral-odd distribution
 - $\Delta q(x) \delta q(x)$: direct connection to *non-zero OAM components* of proton wave function
 - Tensor charge, $\delta q = \int_0^1 [\delta q(x) \delta \overline{q}(x)] dx$

Global analyses access in SIDIS + e^+e^- , e.g. via "Collins" or IFF asymmetries *Currently limited reach in* (x, Q^2)

Complete understanding of nucleon structure requires knowledge of

- Unpolarized PDF, f(x)
- Helicity PDF ($\Delta f(x)$)
- Transversity $(h_1(x) \text{ or } \delta q(x))$ chiral odd \rightarrow requires another chiral-odd distribution
 - $\Delta q(x) \delta q(x)$: direct connection to *non-zero OAM components* of proton wave function
 - Tensor charge, $\delta q = \int_0^1 [\delta q(x) \delta \overline{q}(x)] dx$

Collins effect, now observed in pp and largely consistent with SIDIS+ e^+e^-

- Tests of TMD factorization and universality
- Sample wider kinematic space ightarrow insight into TMD evolution

15

p_ (GeV/c)

STAR Collaboration, PLB 780, 332 (2018)

Significant dihadron asymmetries at RHIC (200 & 500 GeV)

- Strong dependence on pair p_T
- In terms of invariant mass, data are consistent with 68% of replicas based on SIDIS & e^+e^- data \rightarrow Same as in SIDIS!
- 200 GeV: *Significant impact* on global transversity analysis! Improved precision of valence u-quark
 - Improved behavior of valence d-quark

Utilize $p + p \rightarrow jet(h^{\pm})$, as at midrapidity Pushing forward = higher *x*:

Simulation Studies

- Precision for 385 pb^{-1} delivered lumi (16 weeks = 1.2 fb⁻¹)
- Momentum smearing of hadrons & jets
- Dilution due to beam remnant, underlying event, and kaon+proton contamination

New with STAR forward upgrade:

- Probe transversity at high x (0.05 to 0.5) and Q^2 (10 to 100 GeV²)
- Quantitative test of Collins function universality and evolution
- Critical information for the lead-up to EIC!

Gluon Linear Polarization

Collins-like asymmetries

- Sensitive to linearly polarized gluons in a transversely polarized proton
- Asymmetries consistent with zero in 500 GeV (shown) and (preliminary) 200 GeV
- STAR data provide first-ever constraints

New with STAR forward upgrade:

- Probe Collins-like asymmetries to $x \leq 2 \times 10^{-3}$
- Important for gluon linear polarization

STAR Collaboration, PRD 97, 032004 (2018)

Gluon Helicity

Gluon Helicity

Gluon Helicity

New with STAR forward upgrade:

- Constrain Δg at low x with forward dijets
- More sensitive to **shape** of $\Delta g(x)$ than inclusive probes
- Pushing both jets to $\eta > 2.8$ allows sensitivity of $x \sim 10^{-3}$

a varied range of x

Forward Dijets: Prelude to the EIC

Dijets at EIC: a promising tool

- Excellent surrogate for partons
- Jets from γ and p side are well-separated in η
- Potential for probing (un)polarized PDFs, FFs, and much more

Dijets with STAR forward upgrade

- Same range of η as dijets with EIC
- Understand dijets physics at EIC kinematics
- Critical for maximizing impact of the EIC era

Summary

- Fascinating open questions in cold-QCD remain
 - STAR poised to continue to play a significant role after BES-II
 - Critical to investigate at high and low x
- Physics goals for a 16-week run in FY22 (estimated 1.2 fb^{-1})
 - Transversity at high x via hadron-in-jet ("Collins") and dihadron ("IFF") A_{UT}
 - Improved understanding of nucleon spin structure
 - Deeper Insight into large forward inclusive hadron asymmetries
 - Experimental tests of TMD factorization and universality in p + p
 - Gluon linear polarization at low x, e.g. via "Collins-like" effect
 - Improved understanding of nucleon spin structure
 - Gluon helicity at low x via forward dijet A_{LL}
 - Improved understanding of nucleon spin structure
 - Opportunity to gain insight critical for maximizing impact of EIC
- *Significant progress* already on the forward upgrade! (*Elke's talk at 15:45*)

Back-up Slides

Cold-QCD Physics with Existing Upgrades

EPD

 Enhanced ability to identify rapidity gaps for diffractive measurements

iTPC

- Improve dE/dx PID resolution and extend η reach of mid-rapidity Collins and IFF measurements
- Substantially increase reconstruction efficiency and reduce need for corrections for intermediate η jets
- Provide tracking efficiency overlapping kinematic region where PHENIX observes strong A dependence of A_N for h⁺
- Extend rapidity reach of W measurements, e.g. A_L and A_N
- Improved tracking substantially reduces size of the "second EEMC" correction for W measurements

Sivers Effect

Color interactions in QCD

"Modified-universality" of the "Sivers" function

Opportunity to see the repulsive interaction between like color charges for the first time!

Can explore all of these observables in 500 GeV p + p collisions at RHIC!

Sivers Effect at RHIC

Collins Effect at RHIC

Evaluate the j_T dependence directly

- 200 and 500 GeV in *complete agreement* for common x_T
- Shape of asymmetries vs. j_T changes with z
 - Peak appears to shift to higher j_T for increasing z
 - Suggests asymmetry does not factorize as

 $A_{IIT} \sim f(j_T) \times f(Z)?!$

 $A_{UT}^{sin(\phi_{s} - \phi_{H})}$

0.02

-0.02

 $0 < \eta < 1$

 10^{-1}

- Models agree relatively well but more work needed
 - More unpolarized data!
 - More thought at low j_T

500 GeV: STAR Collaboration, PRD 97, 032004 (2018) 200 GeV: Int. J. Mod. Phys. Conf. Ser. 40, 1660040

Hyperons

First measurement of ΛD_{TT} at RHIC!

- Sensitive to transversity and transversely polarized FF
- Possible channel to constrain transversity of strange quarks
- Consistent with model calculation from PRD 70, 034015 (2004) and PRD 73, 077503 (2006) Improved precision for Λ D_{LL}
- Sensitive to polarized PDF and polarized FF

p_ [GeV/c]

6

μ

-0.05

Hadron-in-jet Fragmentation Functions

The RHIC Spin Collaboration, arXiv:1602.03922

Unpolarized in-jet & dihadron fragmentation functions

- STAR equipped with *particle ID*, e.g. time-offlight (TOF) and energy-loss (*dE*/*dx*) in TPC
- Use PID to identify pion-in-jet, kaon-in-jet, etc. — Enhance sensitivity to strangeness w/ K-tag

pp/pA Physics in 2020+

RHIC Cold QCD physics after BES-II at Mid & Forward Rapidities:

The RHIC Cold QCD Plan for 2017 to 2023: A Portal to the EIC (arXiv:1602.03922)

- \rightarrow Critical to the mission of the RHIC physics program
- ightarrow Fully realize the scientific promise of the EIC

Midrapidity: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0669

- Based on existing STAR detectors, utilizing recent BES II upgrades (iTPC, eTOF, EPD) Forward-rapidity: <u>https://drupal.star.bnl.gov/STAR/starnotes/public/sn0648</u>
- Upgrades consist of **HCal** + **ECal** + **Tracking** in range of $2.5 < \eta < 4.5$

Positive endorsement by 2018 PAC:

- STAR presented a *rich program* for future operation after BES II that addresses many *important and innovative topics* in p + p, p + A and A + A physics.
- ...would enable studies of *novel reaction channels* including several specific diffractive reactions and ultra-peripheral collisions of interest to hadron structure and QGP physics alike.