STAR BUR 2022: $500 \mathrm{GeV} p+p$ Run

Jim Drachenberg BNL NPP PAC Meeting
 June 10, 2019

OUTLINE

- Open Questions in Cold QCD
- Timeframe and Vital Stats
- Transversity
- Gluon Helicity
- Summary

STAR Cold QCD results have significant impact!

First evidence of polarized gluons

First Collins effect in $p+p$

Worldwide first hint of Sivers sign change

Fascinating questions remain...

Positive flavor asymmetry in the polarized sea

Open Questions in Cold QCD

Deep and critical questions remain unanswered...

- Limited understanding of how quarks, gluons, and their spins are distributed in space and momentum inside the nucleon.
- How does partonic orbital motion contribute to the proton spin?
- Large transverse spin asymmetries observed at forward angles for inclusive hadron production remain poorly understood.
- Assumptions of universality and factorization for transverse-momentum-dependent (TMD) functions probed in $p+p$ collisions need to be tested and their evolution in Q^{2} quantified.

Open Questions in Cold QCD

STAR detector post-BES-II well positioned to address many of these questions!

- Problem: existing detectors access limited range of $x=p_{\text {parton }} / p_{\text {proton }}$!
- Full understanding of hadrons and hadronic matter: probe high $-x$ and low- x
- Most direct access through asymmetric collisions, i.e. $x_{1} \gg x_{2}$
- Outgoing particles emitted at far forward angles
\rightarrow STAR Forward Upgrade!

Timeframe and Vital Stats

From the BUR charge...

In addition, I request presentations on... an update of the physics goals for a short (16 cryo-weeks) forward Spin physics run in FY22 with $500 \mathrm{GeV} p+p$ collisions.

- Follows completion of BES-II
- Possible last opportunity for extended 500 GeV running at RHIC
- Inaugural physics run with full suite of upgraded forward detectors
- Very positive feedback from NSF and fully expect to receive funding!
- First $p+p$ run able to exploit capabilities of iTPC, eTOF, and EPD
- Anticipate a total delivered luminosity of $1.2 \mathrm{fb}^{-1}$
- Roughly double that of the 2017 run
- Significantly improve precision of midrapidity measurements
- Weak boson A_{N} (Sivers), Collins, IFF, Collins-like, (di)jet $A_{L L}$, etc.
- Not shown here for reasons of time

A Surprise from Transverse Single-spin Asymmetries

$$
A_{U T}=\frac{d \sigma^{\uparrow}-d \sigma^{\downarrow}}{d \sigma^{\uparrow}+d \sigma^{\downarrow}}
$$

$d \sigma^{\uparrow(\downarrow)}$-- cross section for leftward scattering when beam polarization is spin-up(down)

Collinear pQCD at leading twist: very small $A_{U T}$
Sizeable $A_{U T}$ at forward pseudorapidity across a large range of \sqrt{S}
Measurements at RHIC in region where NLO pQCD crosssection provides a reasonable description of the data
\rightarrow Go beyond collinear pQCD at leading twist
\rightarrow Insight into transverse polarization structure?

Mechanisms for Transverse Single-spin Asymmetries

Transverse Momentum Dependent (TMD) Distributions and FFs

Sivers mechanism: asymmetry in
the jet or γ production
D. Sivers, PRD 41, 83 (1990); 43, 261 (1991)

Twist-3 Distributions and FFs

Y. Koike, RSC Discussion (2004)

Collins mechanism: asymmetry in the jet fragmentation

$$
\text { J. Collins, NP B396, } 161 \text { (1993) }
$$

Asymmetry from multi-parton correlation functions e.g. Qiu and Sterman, PRL L67, 2264 (1991); PRD 59, 014004 (1998)

Correlators closely related to k_{T} moments of TMD's

Transversity

Complete understanding of nucleon structure requires knowledge of

- Unpolarized PDF, $f(x)$
- Helicity PDF $(\Delta f(x))$
- Transversity $\left(h_{1}(x)\right.$ or $\left.\delta q(x)\right)$ - chiral odd \rightarrow requires another chiral-odd distribution
- $\Delta q(x)-\delta q(x):$ direct connection to non-zero OAM components of proton wave function
- Tensor charge, $\delta q=\int_{0}^{1}[\delta q(x)-\delta \bar{q}(x)] d x$

Global analyses access in SIDIS $+e^{+} e^{-}$, e.g. via "Collins" or IFF asymmetries Currently limited reach in (x, Q^{2})

Transversity

Complete understanding of nucleon structure requires knowledge of

- Unpolarized PDF, $f(x)$
- Helicity PDF $(\Delta f(x))$
- Transversity $\left(h_{1}(x)\right.$ or $\left.\delta q(x)\right)$ - chiral odd \rightarrow requires another chiral-odd distribution
- $\Delta q(x)-\delta q(x)$: direct connection to non-zero OAM components of proton wave function
- Tensor charge, $\delta q=\int_{0}^{1}[\delta q(x)-\delta \bar{q}(x)] d x$

Collins effect, now observed in $p p$ and largely consistent with SIDIS $+e^{+} e^{-}$

- Tests of TMD factorization and universality
- Sample wider kinematic space \rightarrow insight into TMD evolution

Transversity

Significant dihadron asymmetries at RHIC (200 \& 500 GeV)

- Strong dependence on pair p_{T}
- In terms of invariant mass, data are consistent with 68% of replicas based on SIDIS \& $e^{+} e^{-}$data
\rightarrow Same as in SIDIS!
- 200 GeV : Significant impact on global transversity analysis!
- Improved precision of valence u-quark
- Improved behavior of valence d-quark

Transversity

Utilize $p+p \rightarrow \operatorname{jet}\left(h^{ \pm}\right)$, as at midrapidity
Pushing forward $=$ higher x :

Simulation Studies

- Precision for $385 \mathrm{pb}^{-1}$ delivered lumi (16 weeks $=1.2 \mathrm{fb}^{-1}$)
- Momentum smearing of hadrons \& jets
- Dilution due to beam remnant, underlying event, and kaon+proton contamination

$500 \mathrm{GeV}: 1<\eta<4$

New with STAR forward upgrade:

- Probe transversity at high $x(0.05$ to 0.5$)$ and $Q^{2}\left(10\right.$ to $\left.100 \mathrm{GeV}^{2}\right)$
- Quantitative test of Collins function universality and evolution
- Critical information for the lead-up to EIC!

Gluon Linear Polarization

Collins-like asymmetries

- Sensitive to linearly polarized gluons in a transversely polarized proton
- Asymmetries consistent with zero in 500 GeV (shown) and (preliminary) 200 GeV
- STAR data provide first-ever constraints

New with STAR forward upgrade:

- Probe Collins-like asymmetries to $x \lesssim 2 \times 10^{-3}$
- Important for gluon linear polarization

Gluon Helicity

Recent data will improve uncertainties further...

Gluon Helicity

RHIC data through 2009:

$$
\begin{gathered}
\int_{0.05}^{1} \Delta g(x) d x=0.23 \pm 0.06 \text { (NNPDF) } \\
\int_{0.05}^{1} \Delta g(x) d x=0.20_{-0.07}^{+0.06} \text { (DSSV) }
\end{gathered}
$$

Add'I Results:

- Intermed. $-\eta$ dijets at 500 GeV
- Intermed. $-\eta \pi^{0}$
- High stats 200 GeV in 2015

 arXiv:1906.02740 Parton Jet $p_{T}[\mathrm{GeV} / \mathrm{c}]$

点 $0.006=$ STAR pp $\rightarrow \pi^{0}+X \quad 2.65<\eta<3.15$ < $0.004=\sqrt{s}=510 \mathrm{GeV} \quad 30<\mathrm{E}<70 \mathrm{GeV}$ 0.002 E

Gluon Helicity

Simulation Studies

- Precision for $1 \mathrm{fb}^{-1}$ delivered lumi (16 wk $=1.2 \mathrm{fb}^{-1}$)

- Assume 60\% pol
- Rel. lumi. syst:
5×10^{-4}

New with STAR forward upgrade:

Forward jet correlated with associated jet in different rapidity ranges samples a varied range of x

- Constrain Δg at low x with forward dijets
- More sensitive to shape of $\Delta g(x)$ than inclusive probes
- Pushing both jets to $\eta>2.8$ allows sensitivity of $x \sim 10^{-3}$

Forward Dijets: Prelude to the EIC

Dijets at EIC: a promising tool

- Excellent surrogate for partons
- Jets from γ and p side are well-separated in η
- Potential for probing (un)polarized PDFs, FFs, and much more

Dijets with STAR forward upgrade

- Same range of η as dijets with EIC
- Understand dijets physics at EIC kinematics
- Critical for maximizing impact of the EIC era

Summary

- Fascinating open questions in cold-QCD remain
- STAR poised to continue to play a significant role after BES-II
- Critical to investigate at high and low x
- Physics goals for a 16 -week run in FY22 (estimated $1.2 \mathrm{fb}^{-1}$)
- Transversity at high x via hadron-in-jet ("Collins") and dihadron ("IFF") $A_{U T}$
- Improved understanding of nucleon spin structure
- Deeper Insight into large forward inclusive hadron asymmetries
- Experimental tests of TMD factorization and universality in $p+p$
- Gluon linear polarization at low x, e.g. via "Collins-like" effect
- Improved understanding of nucleon spin structure
- Gluon helicity at low x via forward dijet $A_{L L}$
- Improved understanding of nucleon spin structure
- Opportunity to gain insight critical for maximizing impact of EIC
- Significant progress already on the forward upgrade! (Elke's talk at 15:45)

Back-up Slides

Cold-QCD Physics with Existing Upgrades

EPD

- Enhanced ability to identify rapidity gaps for diffractive measurements

iTPC

- Improve $d E / d x$ PID resolution and extend η reach of mid-rapidity Collins and IFF measurements
- Substantially increase reconstruction efficiency and reduce need for corrections for intermediate η jets
- Provide tracking efficiency overlapping kinematic region where PHENIX observes strong A dependence of A_{N} for h^{+}
- Extend rapidity reach of W measurements, e.g. A_{L} and A_{N}
- Improved tracking substantially reduces size of the "second EEMC" correction for W measurements

Sivers Effect

Color interactions in QCD

"Modified-universality" of the "Sivers" function

QCD:

Sivers $_{\text {DIS }}=-$ Sivers Drell-Yan or Sivers ${ }_{\text {w }}$
A_{N} for direct photon also has a closely related "sign change"
Opportunity to see the repulsive interaction between like color charges for the first time!

Can explore all of these observables in $500 \mathrm{GeV} p+p$ collisions at RHIC!

Sivers Effect at RHIC

Sivers through weak bosons

- Higher scale than DY
- Sensitivity to evolution!
- Test through W/Z, DY, and direct photon (twist-3)

Proposal for 2022

- Go beyond simply testing sign-change
- Test the magnitudes between SIDIS and $p+p$

A_{N} for DY to ± 0.008
- $\mathrm{DY} e^{+} e^{-}$
- $2.5<\eta<4.0$ (FMS+FPre+FPost)
- $4.0 \mathrm{GeV}<M_{e^{+}} e^{-}<9.0 \mathrm{GeV}$

Collins Effect at RHIC

Evaluate the j_{T} dependence directly

- 200 and 500 GeV in complete agreement for common x_{T}
- Shape of asymmetries vs. j_{T} changes with z
- Peak appears to shift to higher j_{T} for increasing z
- Suggests asymmetry does not factorize as

$$
A_{U T} \sim f\left(j_{T}\right) \times f(z) ?!
$$

- Models agree relatively well but more work needed
- More unpolarized data!
- More thought at low j_{T}

Hyperons

First measurement of $\Lambda D_{T T}$ at RHIC!

- Sensitive to transversity and transversely polarized FF
- Possible channel to constrain transversity of strange quarks
- Consistent with model calculation from PRD 70, 034015 (2004) and PRD 73, 077503 (2006)

Improved precision for $\Lambda D_{L L}$

- Sensitive to polarized PDF and polarized FF

Hadron-in-jet Fragmentation Functions

Unpolarized in-jet \& dihadron fragmentation functions

- STAR equipped with particle ID, e.g. time-offlight (TOF) and energy-loss ($d E / d x$) in TPC
- Use PID to identify pion-in-jet, kaon-in-jet, etc. -Enhance sensitivity to strangeness w/ K-tag

pp/pA Physics in 2020+

RHIC Cold QCD physics after BES-II at Mid \& Forward Rapidities:

The RHIC Cold QCD Plan for 2017 to 2023: A Portal to the EIC (arXiv:1602.03922)
\rightarrow Critical to the mission of the RHIC physics program
\rightarrow Fully realize the scientific promise of the EIC
Midrapidity: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0669

- Based on existing STAR detectors, utilizing recent BES II upgrades (iTPC, eTOF, EPD)

Forward-rapidity: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0648

- Upgrades consist of HCal + ECaI + Tracking in range of $2.5<\eta<4.5$

Positive endorsement by 2018 PAC:

- STAR presented a rich program for future operation after BES II that addresses many important and innovative topics in $p+p, p+A$ and $A+A$ physics.
- ...would enable studies of novel reaction channels including several specific diffractive reactions and ultra-peripheral collisions of interest to hadron structure and QGP physics alike.

