

Some facts about Mainz

- Mainz is small town, but capital of Rhineland-Palatinate
 - Next to the river Rhine (with some quite nice castles)
 - 20 Minutes from Frankfurt International Airport
 - Founded by romans 2K years ago
 - The cathedral is only 1000 years old (and burnt down several times)
- Time-Magazine's man of the millennium:
 - Johannes Gutenberg, who invented the printing press in Mainz

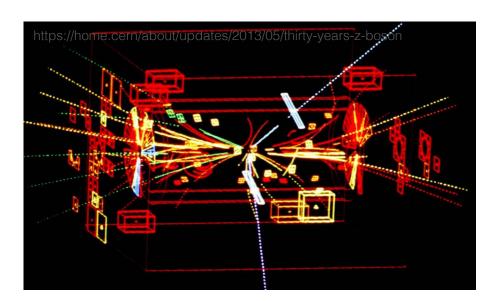
Johannes Gutenberg University

- Founded in 1477 and reopened by the French occupation forces in 1946
 - 37.000 students for all subjects (bachelor, master, PhD)
 - German cluster of excellence PRISMA for fundamental physics
- Own electron accelerator MAMI and research reactor
 - 60 physics professors and research groups: LHC, IceCube, Xenon, SOX, NA62, JUNO, ALPS,

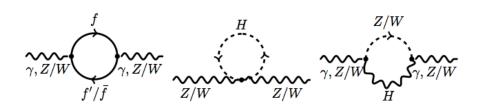
Electroweak Precision Physics

Summary of the Electroweak Sector

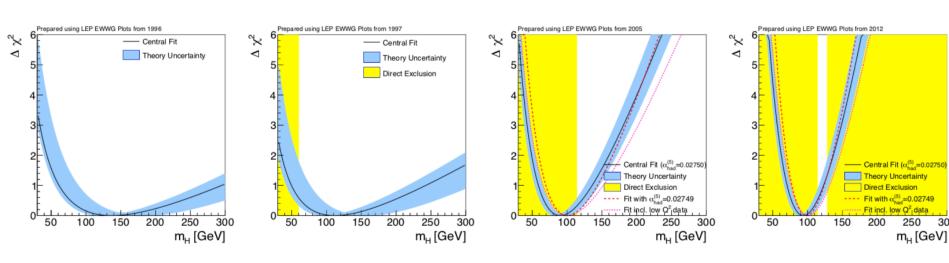
- The electroweak sector of the Standard Model has five parameters
 - \bullet α_{em} , G_{F_1} , m_{W_1} , m_{Z_1} , $\sin^2\theta_W$
 - (+ m_H for the scalar sector)
- However, they are not independent, but related by theory


$$\sin^2 \theta_W = 1 - \frac{m_W^2}{m_Z^2}$$

$$m_W^2 \sin^2 \theta_W = \frac{\pi \alpha}{\sqrt{2}G_E}$$



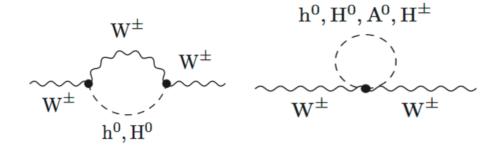
Radiative Corrections


- Tree-level not sufficient
 - The impact of corrections stored in EW form factors
- The relation between SM parameters appear with quadratic dependence on m_{top}, logarithmic dependence on M_H
- Idea of electroweak fits
 - Measure many different observables
 - Calculate the relations between all observables
 - Probe the consistency of the SM / Predict observables

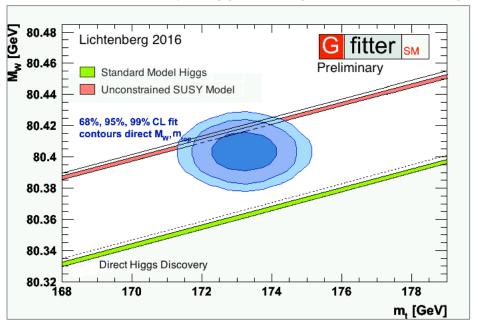
$$egin{aligned} \sin^2\!\! heta_{ ext{eff}}^f &= \kappa_Z^f \sin^2\! heta_W \ g_{V,f} &= \sqrt{
ho_Z^f} (I_3^f - 2Q^f \sin^2\!\! heta_{ ext{eff}}^f) \ g_{A,f} &= \sqrt{
ho_Z^f} I_3^f \ M_W^2 &= rac{M_Z^2}{2} \left(1 + \sqrt{1 - rac{\sqrt{8}\pi lpha (1 + \Delta r)}{G_F M_Z^2}}
ight) \end{aligned}$$

$$\begin{split} &M_W\left(\ln(M_H), m_t^2, M_Z, \Delta\alpha_{\text{had}}^{(5)}(M_Z^2), \alpha_S(M_Z^2)\right) \\ &\sin^2\!\!\theta_{\text{eff}}^f\left(\ln(M_H), M_H, m_t^2, M_Z, \Delta\alpha_{\text{had}}^{(5)}(M_Z^2), \alpha_S(M_Z^2)\right) \end{split}$$

Input to the Electroweak Fit

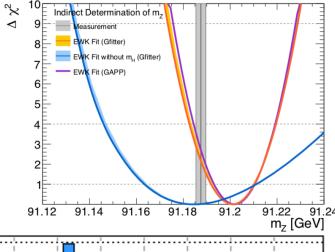

- Success of the Fit: Amazing predictions!
 - Top-Quark mass before its discovery
 - Higgs-Boson mass before its discovery and the funding argument for the LHC

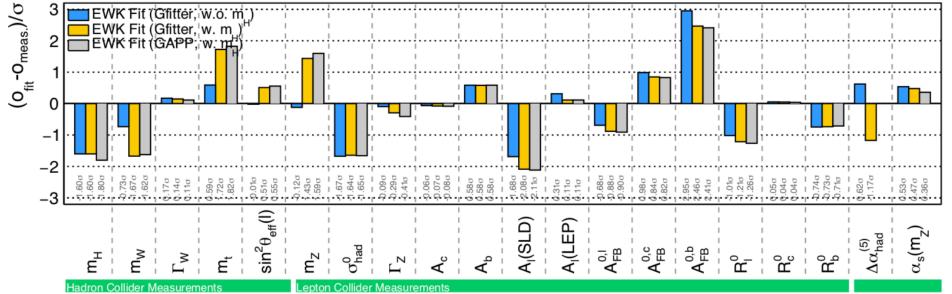
- Main inputs to the gobal electroweak fit
 - LEP: Z boson observables
 - Tevatron: W boson mass, top quark mass
 - LHC (today's focus)
 - Higgs boson mass
 - Top quark mass
 - Electroweak mixing angle
 - W boson mass

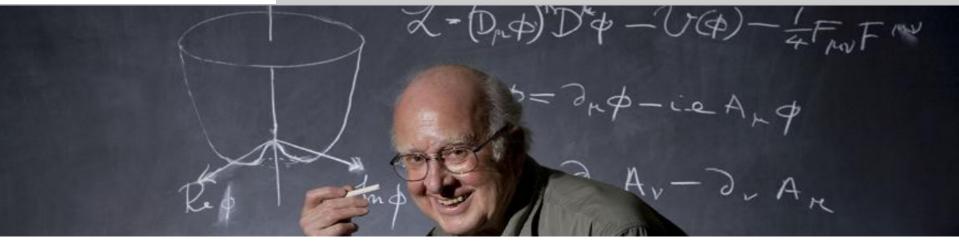


Why is the fit still interesting?

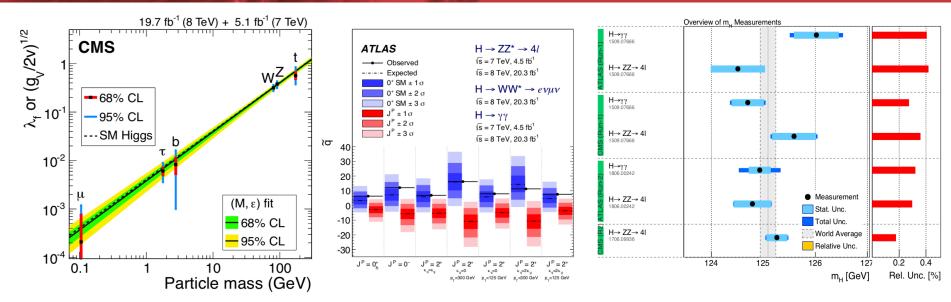
- So far a "simple" thing: test consistency of the SM
 - Current p-value = 0.24
- But electroweak precision measurements are sensitive to several new physics scenarios, e.g. SUSY
 - Radiative correction depends on mass splitting (∆m²) between squarks in SU(2) doublet
 - Precision on m_W could significantly limit the allowed MSSM space





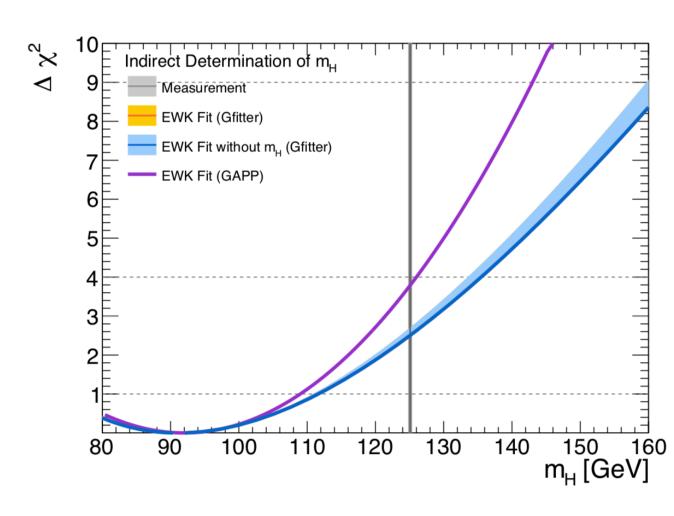

Why is the fit still interesting?

- General idea: predict a certain observable with the global electroweak fit and compare to the direct measurement
 - When we find a significant tension, then this could be a hint to new physics



The Higgs Boson Mass

Higgs Boson Mass

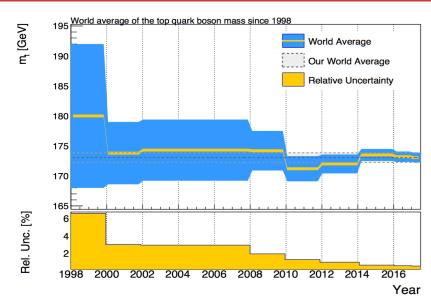


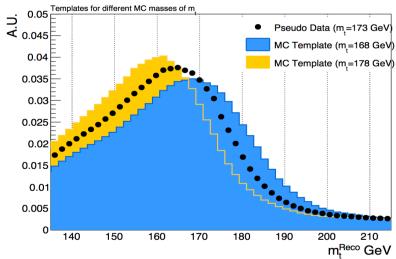
- Only the mass parameter of the Higgs enters the fit
 - have to assume that the "Higgs" is really the Standard Model Higgs boson
 - Coupling and JPC measurement look pretty much like a SM-Higgs

- Inofficial combination of latest measurements, yield to
 - $M_{H} = 125.10 \pm 0.14 \text{ GeV}$
 - with a χ 2/n.d.f. = 8.9/6
- Change of precision from 0.1GeV to 1.0 GeV, changes the \chi^2 of the fit by only 0.005

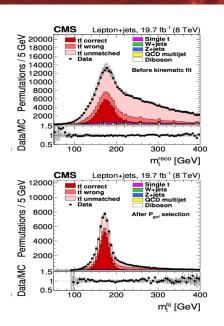
Interpretation of the Higgs Boson Mass

- Indirect prediction of the Higgs boson mass is
 - M_H=92.0±20 GeV
- Perfect knowledge of m_W and/or sin²θ_{eff} would reduce uncertainty to 10 GeV



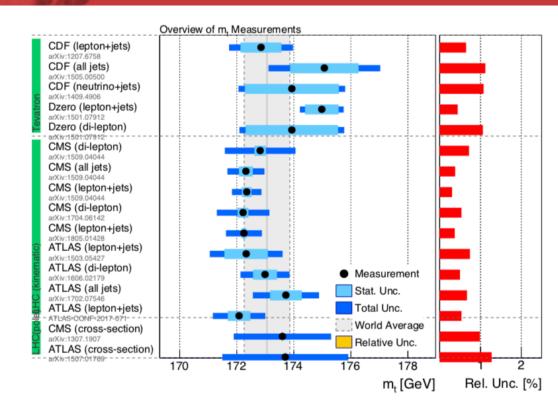


Top Quark Mass


Measurement of the Top Quark Mass (1/3)

- Several approaches to measure the kinematic top-quark mass (template-method, matrix-element method, ideogram method, ...)
- World average dominated until 2011 by Tevatron, then LHC started to play crucial role
- Important: EW-fit needs pole mass of top-quark as input, but measured m_{top} at Tevatron and LHC is a MC parameter
 - Assume additional uncertainty of 300-500 MeV (not known if this is conservative)

Measurement of the Top Quark Mass (2/3)

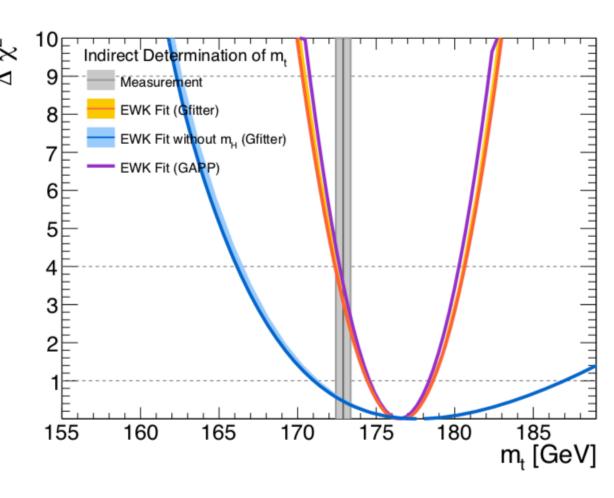


Experiment	Channel	Method	Value	Stat.	Sys.	Total	Jet	Exp.	Model	UE +	Had.
			[GeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Color	Unc.
				[GeV]	[GeV]	[GeV]	[GeV]	[GeV]	[GeV]	[GeV]	[GeV]
CDF	l+jets	Template	172.85	0.71	0.85	1.11	0.55	0.60	0.1	0.22	0.57
CDF	ν +jets	Template	173.93	1.64	0.87	1.86	0.48	0.56	0.32	0.33	0.36
DØ	1+jets	M.E.	174.98	0.58	0.49	0.76	0.29	0.32	0.19	0.12	0.26
CMS	1+jets	AMWM	172.82	0.19	1.22	1.23	0.34	0.81	0.84	0.11	0.79
CMS	1+jets	Ideogram	172.35	0.16	0.48	0.51	0.12	0.43	0.15	0.08	0.33
CMS	1+jets	Template	172.22	0.18	$^{+0.89}_{-0.93}$	$^{+0.91}_{-0.95}$	0.45	0.17	0.46	0.17	0.51
ATLAS	1+jets	Template	172.33	0.75	1.03	1.27	0.64	0.62	0.48	0.19	0.18
DØ	semi-lep.	Matrix	173.93	1.61	0.88	1.83	0.67	0.42	0.36	0.15	0.31
ATLAS	semi-lep.	Template	172.99	0.41	0.74	0.85	0.62	0.30	0.25	0.11	0.22
ATLAS	semi-lep.	Template	172.08	0.39	0.82	0.91	0.56	0.43	0.20	0.21	0.15
CMS	semi-lep.	Ideogram	172.25	0.08	0.62	0.62	0.39	0.19	0.27	0.32	0.10
CDF	full.had.	Template	175.07	1.19	1.55	1.95	1.12	0.98	0.28	0.32	0.29
ATLAS	full.had.	Template	173.72	0.55	1.01	1.15	0.69	0.68	0.2	0.2	0.64
CMS	full.had.	Ideogram	172.32	0.25	0.59	0.64	0.28	0.41	0.24	0.21	0.3

- Most precise measurements performed in the lepton+jets channel
 - Significant differences in assigned model uncertainties of different experiments;
- Most precise value from CMS(arXiv:1509.04044): $m_t^{MC} = 172.35 \pm 0.51$ GeV
- ATLAS combination (8 TeV semi-leptonic+others): m_t^{MC} = 172.69±0.48 GeV
 - Already close to 300-500 MeV theory uncertainty level
- Recent ATLAS of m_{pole} measurement (ATLAS-CONF-2017-044): $m_t^{pole} = 173.2 \pm 0.9 \pm 0.8 \pm 1.2$

Measurement of the Top Quark Mass (3/3)

- No official combination of latest ATLAS and Tevatron results
- Preliminary combination
 - Correlations are estimated from previous official combinations
 - Take individual combinations from all four experiments as well as new 13 TeV measurements into account
 - Observe tension between D0 and LHC by 2.5σ
 - driven by D0 lepton + jets measurement

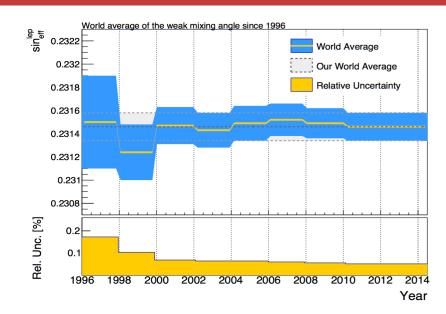


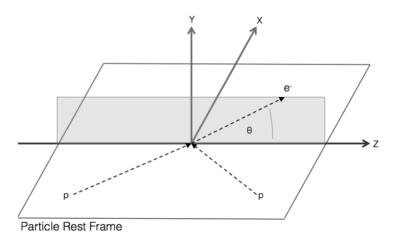
 Assuming additional 320 MeV for m_{pole} vs m_{MC} interpretation, leads to

• $m_t^{pole} = 172.90 \pm 0.47 \text{ GeV}.$ with a p-value of 4.1%

Interpretation of the Top Quark Mass

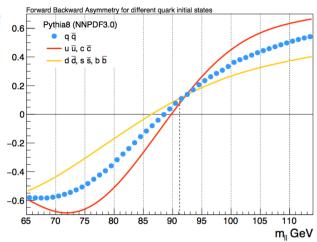
- Indirect prediction of the top quark mass
 - $m_{top} = 176.5 \pm 2.1 \text{ GeV}$
 - Uncertainty on M_W contributes 1.9 GeV
 - Significant improvement when including m_H in the fit
- Experimental uncertainty on m_{top} is already close to theory limit

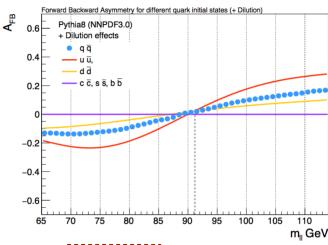




The Electroweak Mixing Angle

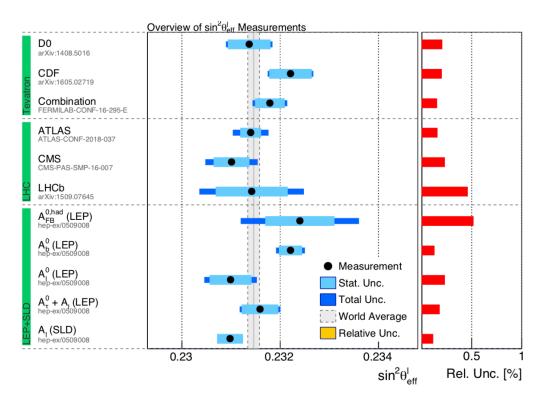
Measurement of the Electroweak Mixing Angle (1/3)


- Discrepancy of LEP and SLD measurement on sin²θ_W triggered quite some interest in recent years
- Problem at Hadron colliders: Do not know incoming fermion direction on an event-by-event basis
 - Problem reduced at Tevatron, very prominent at LHC
 - Significant $p_T(Z)$ due to ISR
 - Need reference frame to define forward- and background angle θ
 - Colins Soper frame
- Use (variation) of template fit approach to extract sin²θ_w



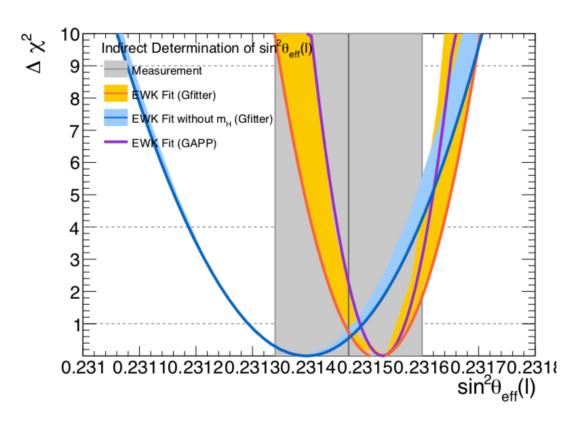
Measurement of the Electroweak Mixing Angle (2/3)

- Forward backward asymmetry also induced by Z/γ interference
- Need to integrate over all initial state quarks
- Knowledge on PDFs is essential!
- Tevatron stat. limited
- LHC limited by PDFs


					-	
$sin^2 heta_{eff}^{lep}$	Value	Stat. Unc.	Exp. Unc.	PDF Unc.	Model Unc.	Total Unc.
D0	0.23095	0.00035	0.00007	0.00019	0.00008	0.00047
CDF	0.23221	0.00043	0.00003	0.00016	0.00006	0.00046
Tevatron (Comb.)	0.23148	0.00027	0.00005	0.00018	0.00006	0.00033
CMS	0.23101	0.00036	0.00018	0.00030	0.00016	0.00053
ATLAS (central)	0.23119	0.00031	0.00018	0.00033	0.00006	0.00049
ATLAS (forward)	0.23166	0.00029	0.00021	0.00022	0.00010	0.00043
ATLAS (combined)	0.23140	0.00021	0.00014	0.00024	0.00007	0.00036
LHCb	0.23142	0.00073	0.00052	0.00043*	0.00036*	0.00106
$A_{FB}^{0,had}$ (LEP)	0.23240	0.00070	0.00100	-	-	0.00120
A_l^0 (LEP)	0.23099	0.00042*	0.00032*	-	-	0.00053
$A_{\tau} + A_{e}$ (LEP)	0.23159	0.00037*	0.00018*	-	-	0.00041
$A_{FB}^{0,b}$ (LEP)	0.23221	0.00023*	0.00017*	-	-	0.00029
A_l (SLD)	0.23098	0.00026*	0.00000*	-	-	0.00026
21/1 1111//			-		_'	14000

Measurement of the Electroweak Mixing Angle (3/3)

Hadron collider results

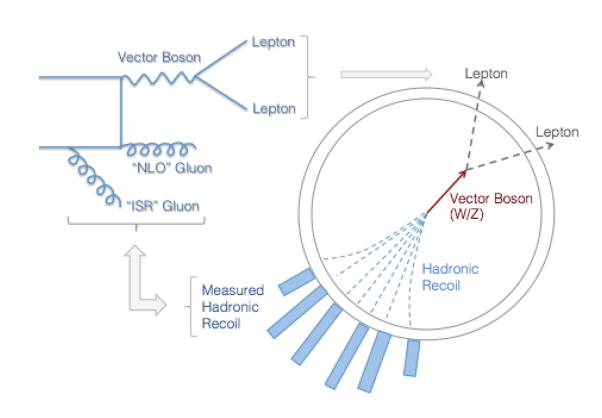

- Measurements at Tevatron and CMS employ a template fit of A_{FB} in the C.S.-frame
- ATLAS employs a template fittig procedure of the angular coefficients and extracts sin²θ_w from A4
- CMS and ATLAS employ PDFprofiling
- Combination of hadron collider results
 - $\sin^2\theta_{\text{eff}} = 0.23140 \pm 0.00023$
 - Level of LEP and SLD
 - Disagreement between LEP and SLD might be just a statistical effect

$$\frac{d\sigma}{dp_T^2 dy d\cos\theta d\phi} = \frac{d\sigma_{unpol}}{dp_T^2 dy} \qquad ((1 + \cos^2\theta) + A_0 \frac{1}{2} (1 - 3\cos^2(\theta)) + A_1 \sin(2\theta)\cos(\phi) + A_2 \frac{1}{2} \sin^2(\theta)\cos(2\phi) + A_3 \sin(\theta)\cos(\phi) + A_4 \cos(\theta) + A_5 \sin^2(\theta)\sin(2\phi) + A_6 \sin(2\theta)\sin(\phi) + A_7 \sin(\theta)\sin(\phi)),$$

Interpretation in the context of the Electroweak Fit

- Indirect Determination
 - $\sin^2\theta_{\text{eff}} = 0.23151 \pm 0.00006$
- World average
 - $\sin^2\theta_{\text{eff}} = 0.23151 \pm 0.00014$
 - More precise than prediction
 - Does it make sense to improve the measurement?
- Hadron Collider average
 - $\sin^2\theta_{\text{eff}} = 0.23140 \pm 0.00023$
 - Assuming an improvement by a factor of two (and a central value within 2σ to the current w.a. would still show no tension above 1.5σ)

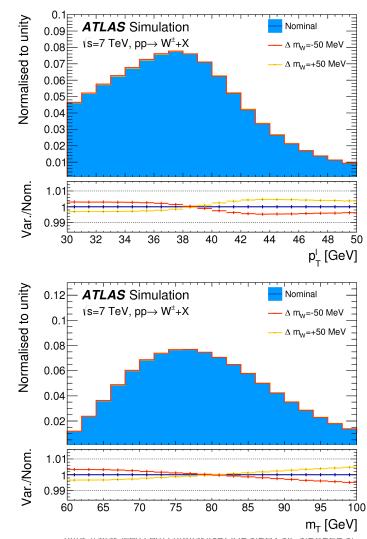
W-Boson Mass Measurement Strategy

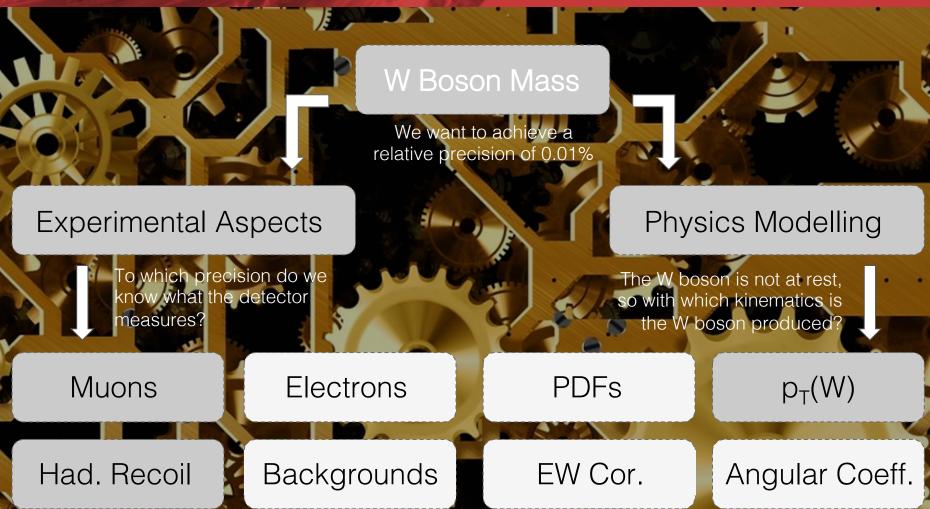

Mass Sensitive Variables

- Main signature: final state lepton (electron or muon): p_T(lepton)
- Recoil: sum of "everything else" reconstructed in the calorimeters
 - a measure of p_T(W,Z)
 - gives us also missing transverse energy

$$\vec{u}_T = \sum_i \vec{E}_{T,i}$$

$$\vec{p}_T^{miss} = -\left(\vec{p}_T^l + \vec{u}_T\right)$$


$$m_T = \sqrt{2p_T^l p_T^{miss} (1 - \cos \Delta \phi)}$$


Mass Sensitive Variables

- Sensitive final state distributions:
 - Lepton transverse momentum p_T(I)
 - Transverse mass: m_T
 - Missing transverse energy ("neutrino p_T"): p_T^{miss}
- Template-Fit approach
 - Assume various W boson mass values in MC event generator and predict the p_T(I), m_T, p_T^{miss} distributions
 - Compare to data
 - Mass determination by χ² minimization

STDM-2014-18/

Why is this measurement complicated?

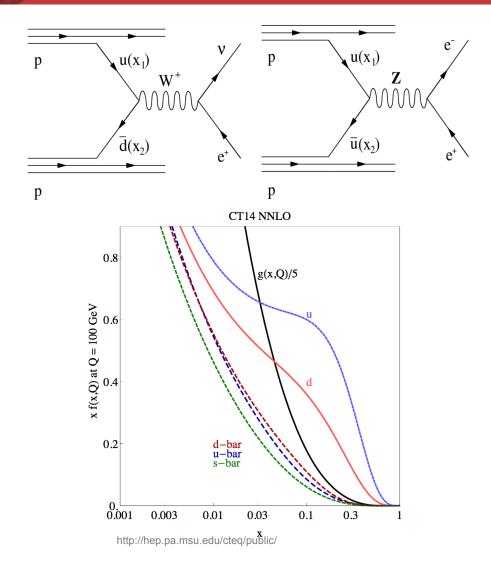
ologs-images.forbes.com/gregsatell/files/2

Focus during the first years of the project

Focus during the last years of the project

Simple Life in the USA

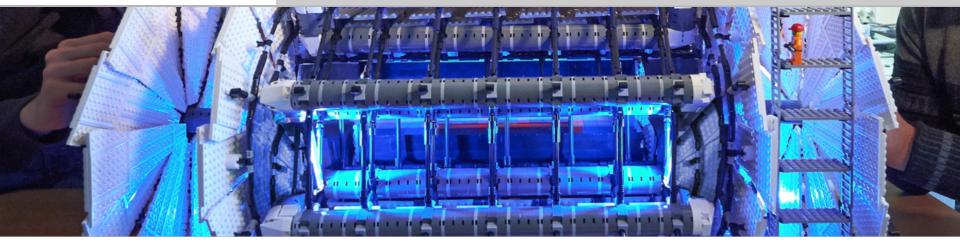
Measurement Strategy at LHC and Tevatron



- Parameterized (not full) simulation that includes all corrections
 - Low pile-up
- CDF-Experiment: e/mu channel
 - Only 20% of data-set used
 - Calibration: J/Psi, Upsilon, Z
- D0-Experiment: e-channel
 - Acceptance up to $\eta < 1.0$
 - Calibration: Z boson only

- Analysis based on full simulation
 - PowhegPythia (NLO QCD+PS);
 - QED FSR using PHOTOS
 - Reweighting to correct for physics and detector modelling
- Data-Set: Run 1 (2011)
 - 7 TeV, 4.6 fb⁻¹ (e), 4.1 fb⁻¹ (µ)
 - Mature, well understood data; moderate (but still significant) pileup

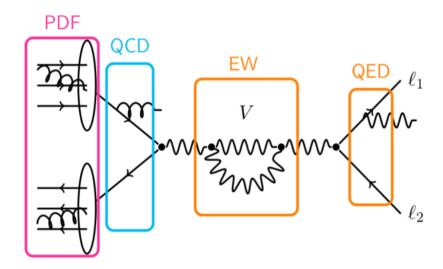
Production of W Bosons at the LHC and Tevatron


- Tevatron: Proton / anti-protons
 - Main production involves up and down quarks
 - small impact of heavy quarks
 - No differences between W+/W-
 - Similar production of Z bosons
- LHC: Proton-proton collisions
 - Heavy quarks become important in the production
 - Different production modes of W+ and W-
 - Z Boson production still dominated by light quarks

Signal Selection and Measurement Regions

- Lepton selections
 - Muons : |η| < 2.4; isolated</p>
 - Electrons : 0<|η|<1.2 or
 1.8<|η|<2.4; isolated
- Kinematic requirements
 - $p_T > 30 \text{GeV} p_T^{\text{miss}} > 30 \text{GeV}$
 - $m_T > 60 \text{GeV} u_T < 30 \text{GeV}$
- Measurement categories
 - Electron/muon channel, p_T-, m_T-Fits, 3/4 rapidity regions, W boson charge
- Muon Channel: 7.8 M events
- Electron Channel: 5.9 M events

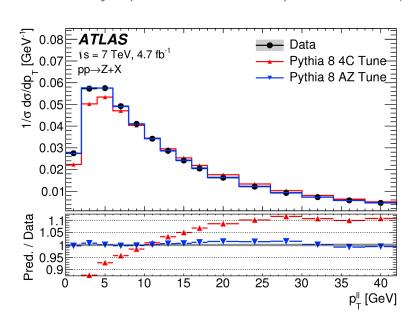
Physics Modelling

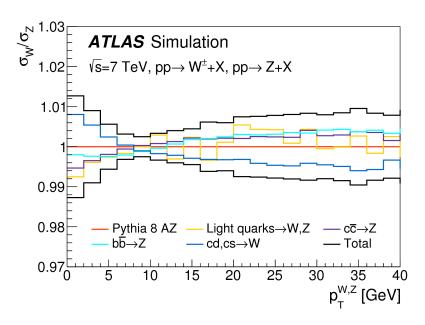


Physics Modelling

- No available generator can describe all observed features: p_T(Z)/p_T(W), A_i, ...
 - Variation of do/dm modeled with a Breit-Wigner + EW cor.
 - do/dp_T is modeled with PS MC
 - dσ/dy modeled at NNLO
 - A_i(y,pt) modeled at NNLO

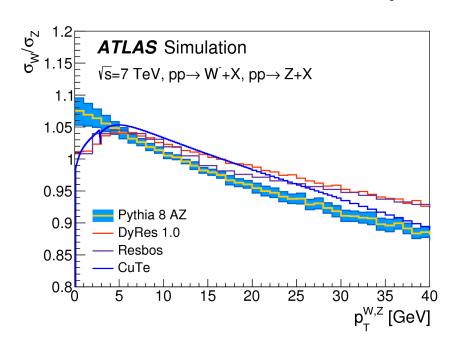
QCD aspects

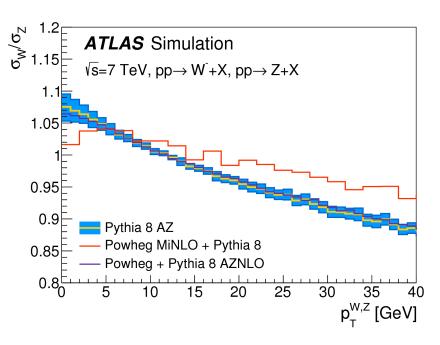

- Rapidity, p_T distributions; angular distributions
- EW aspects
 - ISR and FSR QED corrections Missing higher-order effects



$$\frac{d\sigma}{dp_1 dp_2} = \left(\frac{d\sigma}{dm}\right) \left(\frac{d\sigma}{dy}\right) \left(\frac{d\sigma(p_t, y)}{dpt} - \frac{1}{\sigma(y)}\right) \cdot \left(\sum_i A_i(y, p_t) P_i(\cos\theta, \phi)\right)$$

Transverse Momentum (A several years effort)


- Traditional approach: fit predictions to Z data, apply to W
 - primordial k_T; α_SISR; ISR cut-off
 - Tested with Powheg+Pythia8, and Pythia8 standalone
- Associated Uncertainties: Z Boson Data, Parton Show Variations and
 - Z→W extrapolation : factorization scale variations (separately for light- and heavy-quark induced production), heavy quark masses



Transverse Momentum (A several years effort)

- Theoretically more advanced calculations were also attempted
 - DYRES (and other resummation codes : ResBos, CuTe)
 - Powheg MiNLO + Pythia8
- All predict a harder p_T(W) spectrum for given p_T(Z) distribution
 - Behaviour is disfavoured by data (see later)

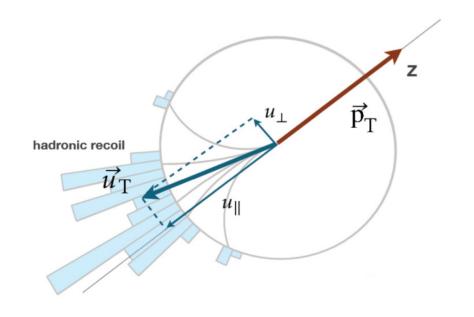
Prof. Dr. M. Schott (Johannes Gutenberg University, Mainz)

Overview of QCD Uncertainties

- CT10nnlo uncertainties (synchronized in DYNNLO and Pythia) + envelope comparing CT10 to CT14 and MMHT.
 - Strong anti-correlation of uncertainties for W₊ and W⁻!
- AZ tune uncertainty; parton shower PDF and factorization scale; heavyquark mass effects
- A_i uncertainties from Z data; envelope for A₂ discrepancy

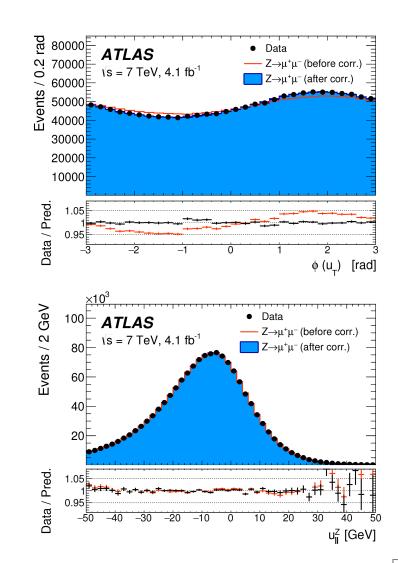
W-boson charge	W^+		W^-		Combined	
Kinematic distribution	p_{T}^{ℓ}	$m_{ m T}$	p_{T}^{ℓ}	$m_{ m T}$	$p_{ m T}^\ell$	$m_{ m T}$
$\delta m_W \; [{ m MeV}]$					[
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

Detector Calibration


Mass Sensitive Variables

Lepton calibration

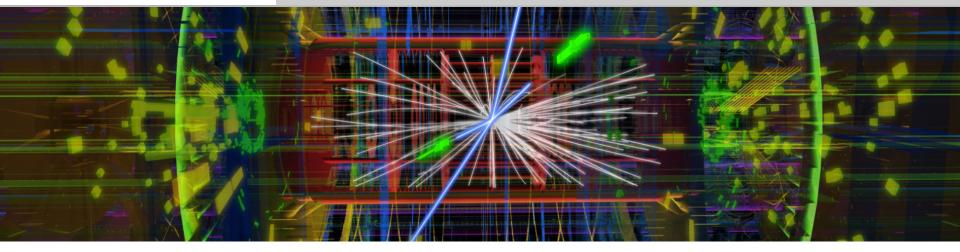
- momentum calibration using the Z peak
- efficiency corrections
 (reconstruction, identification,
 trigger) rederived via tag- and
 probe-method in 3 dimensions


Recoil calibration

- Event activity corrections
- Recoil response calibration using expected p_T balance between lepton pairs and u_T in Z events

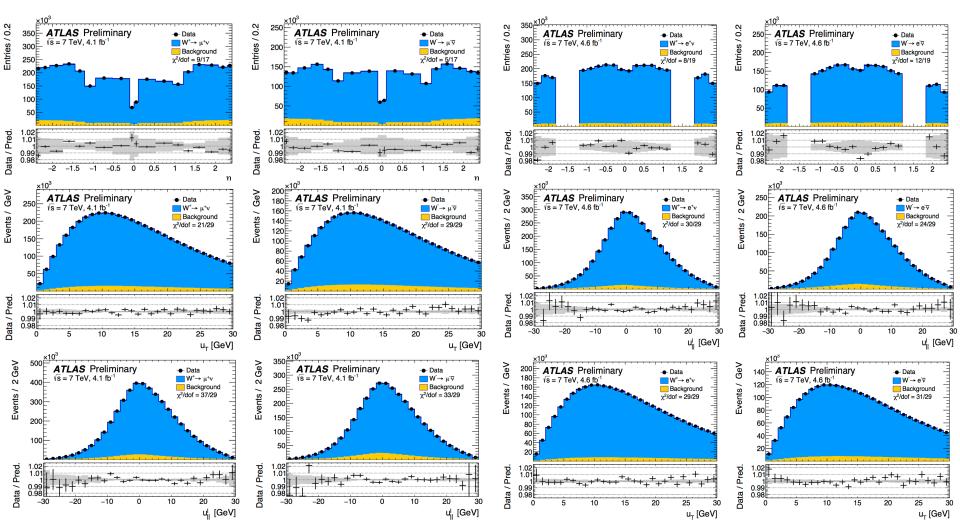
A distribution which took us months

- Typically one expects a Φ symmetry of the detector response (and the physics)
- We observed significant differences to MC
 - offset of the interaction point with respect to the detector center in the transverse plane
 - Non-zero crossing angle between the proton beams
 - φ-dependent response of the calorimeters



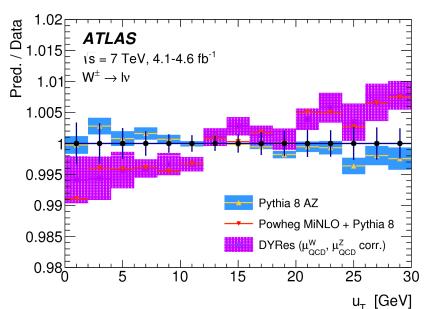
3 tables after 3 years of work

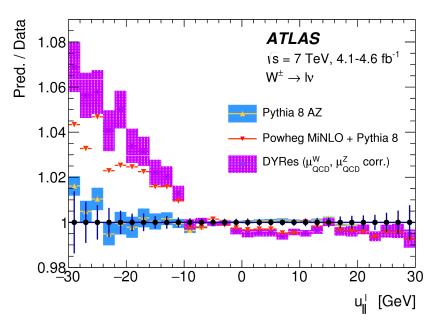
- Experimental uncertainty due to muon detector calibration on the 10 MeV level
 - In terms of average accuracy on the position resolution, this means µm-precision!
- Not even discussed here: How to estimate backgrounds
 - We control the background contributions on a rel. 5% level!
 - Final background related uncertainties
 - p_T-fit: 3-5 MeV
 - m_T-fit: 8-9 MeV (elec.)
 - m_T-fit: 3-5 MeV (muon)


$ \eta_{\ell} $ range	[0.0, 0.8]		[0.8, 1.4]		[1.4, 2.0]		[2.0, 2.4]		Combined	
Kinematic distribution	$p_{ m T}^\ell$	$m_{ m T}$	$p_{ m T}^\ell$	$m_{ m T}$	$p_{ m T}^\ell$	$m_{ m T}$	$p_{ m T}^{ l}$	$m_{ m T}$	p_{T}^{ℓ}	$m_{ m T}$
$\delta m_W [{ m MeV}]$									_	
Momentum scale	8.9	9.3	14.2	15.6	27.4	29.2	111.0	115.4	8.4	8.8
Momentum resolution	1.8	2.0	1.9	1.7	1.5	2.2	3.4	3.8	1.0	1.2
Sagitta bias	0.7	0.8	1.7	1.7	3.1	3.1	4.5	4.3	0.6	0.6
Reconstruction and									l	i
isolation efficiencies	4.0	3.6	5.1	3.7	4.7	3.5	6.4	5.5	2.7	2.2
Trigger efficiency	5.6	5.0	7.1	5.0	11.8	9.1	12.1	9.9	4.1	3.2
Total	11.4	11.4	16.9	17.0	30.4	31.0	112.0	116.1	9.8	9.7
										::::(
$ \eta_{\ell} $ range		[0.0, 0.6]		[0.6, 1.2]		[1.82, 2.4]		Combined		
Kinematic distribution			p_{T}^{ℓ}	$m_{ m T}$	p_{T}^{ℓ}	$m_{ m T}$	p_{T}^{ℓ}	$m_{ m T}$	p_{T}^{ℓ}	$m_{ m T}$
$\delta m_W \; [{ m MeV}]$			- 1		- 1		- 1		- 1	
Energy scale			10.4	10.3	10.8	10.1	16.1	17.1	8.1	8.0
Energy resolution			5.0	6.0	7.3	6.7	10.1	15.5	3.5	5.5
Energy linearity			$\frac{0.0}{2.2}$	4.2	5.8	8.9	8.6	10.6	3.4	5.5
Energy tails			2.3	3.3	2.3	3.3	2.3	3.3	2.3	3.3
Reconstruction efficiency			10.5	8.8	9.9	7.8	14.5	11.0	7.2	6.0
Identification efficiency			10.4	7.7	11.7	8.8	16.7	12.1	7.3	5.6
Trigger and isolation efficiencies			0.2	0.5	0.3	0.5	2.0	2.2	0.8	0.9
Charge mis-measurement			0.2	0.2	0.2	0.2	1.5	1.5	0.1	0.1
Total			19.0	17.5	21.1	19.4	30.7	30.5	14.2	14.3
										i
W-boson charge					W^+		W-		Combined	
Kinematic distribution					p_{T}^{ℓ}		p_{T}^{ℓ}		p_{T}^{ℓ}	
					p_{T}	m_{T}	p_{T}	m_{T}	p_{T}	m_{T}
$\delta m_W \; [{ m MeV}]$										1
$\langle \mu \rangle$ scale factor				0.2	1.0	0.2	1.0	0.2	1.0	
ΣE_{T} correction					0.9	12.2	1.1	10.2	1.0	11.2
Residual corrections (statistics)					2.0	2.7	2.0	2.7	2.0	2.7
Residual corrections (interpolation)					1.4	3.1	1.4	3.1	1.4	3.1
Residual corrections $(Z \to W \text{ extrapolation})$					0.2	5.8	0.2	4.3	0.2	5.1
Total					2.6	14.2	2.7	11.8	2.6	13.0

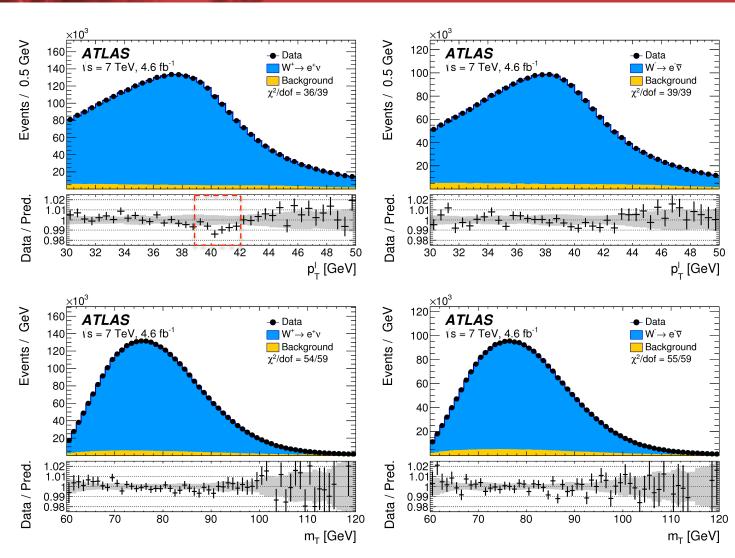
W Boson Analysis

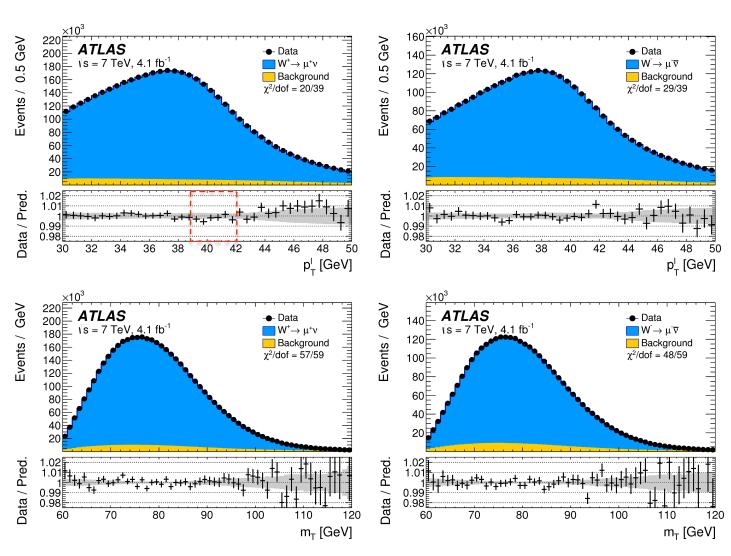
Control Distributions (non m_w sensitive)



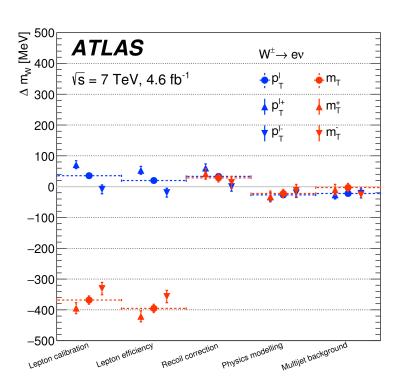

Prof. Dr. M. Schott (Johannes Gutenberg University, Mainz)

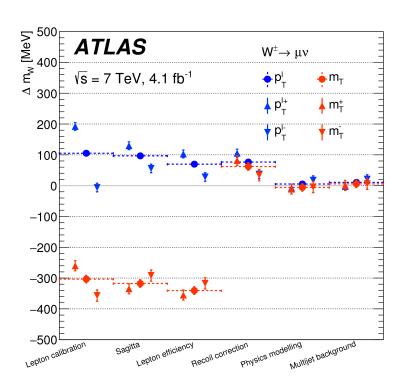
Crucial Test of p_T(W) modelling


- Remember the problem with the p_T(W) description?
 - How do we know, which MC generator to trust?
 - How do we know, that our assigned uncertainty makes sense?
- The u_{II}(I) distribution is very sensitive to the underlying p_T(W) distribution
 - Can exploit this feature to verify the accuracy of our baseline model, and compare to alternative calculations


W-Mass Distributions: Electrons

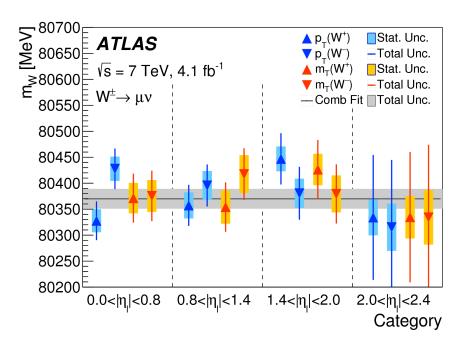
- Predictions set to final combined m_W value
- Dip at 40GeV was studied thoroughly
 - No striking effects: stays at 2σ
 - Only mild impact on final m_W

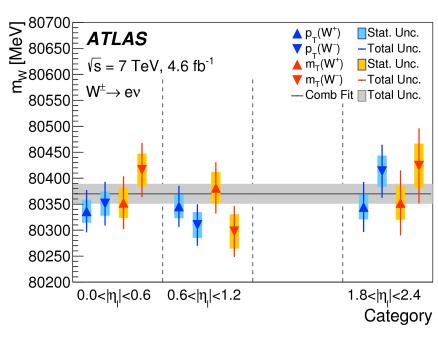

W-Mass Distributions: Muons


- Very good agreement for muons
- Overall: x²/n_{dof} probability distribution from 84 data/ prediction comparison
 - <P>= 0.54

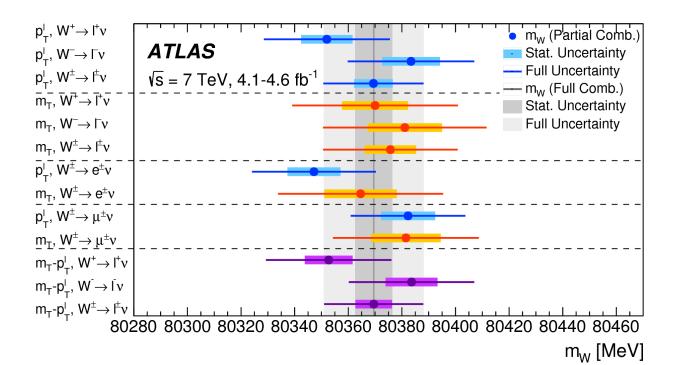
A Little Bit of History

- Over many years we investigated differences in blinded m_W mass-fits in different channels, templates, categories
 - Only after all corrections applied (and all bugs where found), we achieved consistent results





Final Measurement

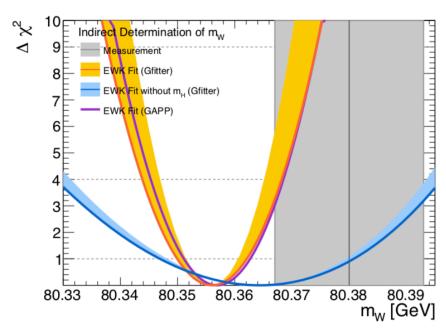

m_w Fit Results in Various Categories

- Illustration of fit-results in all measurement categories based on p_T and m_T templates for W⁺ and W⁻ in the electron and muon channel
- Compatibility tests performed before unblinding: $\chi^2/n_{dof} = 29 / 27$

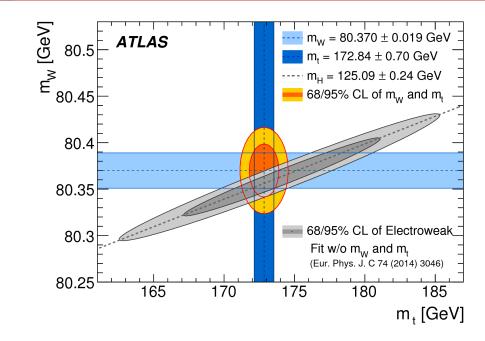
m_W Fit Results in Various Combinations

Combination	Weight				
Electrons	0.427				
Muons	0.573				
$m_{ m T}$	0.144				
$p_{ m T}^\ell$	0.856				
\overline{W}^+	0.519				
W^-	0.481				

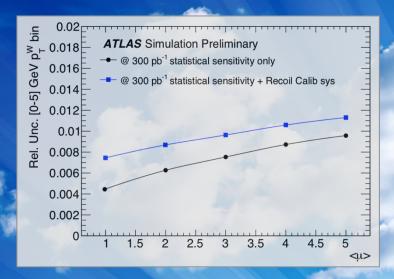
Nobody cares about your method. People remember only your last number!

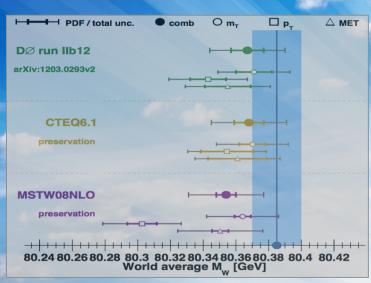

Final measured mass of the W boson

 $= 80.370 \pm 0.007 (stat.) \pm 0.011 (exp.) \pm 0.014 (mod) GeV$


= 80.370±0.019 GeV

Interpretation in the context of the Electroweak Fit


- Good news: New measurement reaches precision of CDF and is now the world leading measurement
- Bad news: We are even more Standard Model ...



- Unofficial combination yields a value of
 - M_W =80380±13 MeV,
 with a p-value of 0.74
- 1.6σ "tension" with the SM

Outlook

- For the Global electroweak fit, we still need more precision on m_w
- LHC
 - CMS will hopefully also publish soon a m_w measurement
 - We have special low-pile up data-sets (2017/18) to allow for direct measurements of p_T(W) and more
 - IMHO: <10 MeV is feasible</p>
- Tevatron
 - x2-5 more statistics available (+ forward detectors)
 - Use improved PDFs based on LHC measurements

