
JETSCAPE Framework:
Installation, Compilation And

Testing 



Prerequisites 
• Compilation and building

• C++ Compiler with C++11 support

• CMake version 3 and above

• zlib (should be already installed) 

• Recommended Installation of the Prerequisites:

• Windows: Windows is currently not supported. We recommend you install a virtual machine 

• https://www.storagecraft.com/blog/the-dead-simple-guide-to-installing-a-linux-virtual-machine-on-windows

and a recent version of Scientific Linux. Then follow the instructions for Linux.

• Apple Mac:

• Install a recent version of Xcode from the App Store; it should provide clang version 3.3 or above.

• Install the command line tools: Open a Terminal and enter (without the "%")

• % xcode-select --install

• Install Homebrew.

• Install cmake: Open a Terminal and enter (without the "%")

• % brew install cmake

• If necessary, install zlib: Open a Terminal and enter (without the "%")

• % brew install zlib

https://www.storagecraft.com/blog/the-dead-simple-guide-to-installing-a-linux-virtual-machine-on-windows


Prerequisites - Linux

NOTE: It is assumed that you have administrator permissions or can obtain 
them using sudo. If that is not the case, please contact your System 
Adminstrator.
• Ensure gcc version 7 or above: In the command line, enter (without the 

"%")
• % gcc --version

• If the version is too low, please update to the required version
• If necessary, install cmake using your distribution's package manager.

In the command line, enter (without the "%")
• % sudo yum install cmake

• If the version is too low, please update to the required version
• If necessary, install zlib: In the command line, enter (without the "%")

• % sudo yum install zlib



Prerequisites - Optional

• Another session of the workshop will focus on an "analysis" of JETSCAPE 
output. For histogramming and visualization, we
recommend ROOT v. 6, an existing version of which will be picked up during 
installation. It can be installed with the same packaged managers in the 
same manner as the required dependencies, i.e.

% brew install root

or
% sudo yum install root 

• Note: Please make us (mekhalaj@wayne.edu) aware of any other packages 
you would like to use instead. 

mailto:mekhalaj@wayne.edu


JETSCAPE – Installation and Compilation 
• Clone the repository from Github:

• git clone https://github.com/JETSCAPE/JETSCAPE.git
• In the command line, navigate into the JETSCAPE directory and enter (without %):

• % cd JETSCAPE-
• % mkdir build
• % cd build
• % cmake ..
• % make 

• Test with the following commands which should produce an output file named 
test_out.dat: 
• % ./brickTest
• % ./readerTest

• We encourage all attendees to familiarize themselves with the code and 
experiment with it! 
• NOTE: you can find details installation instruction on JETSAPE GitHub page

https://github.com/JETSCAPE/JETSCAPE.git
https://github.com/JETSCAPE/JETSCAPE


JETSCAPE - Testing 
• Inside build directory, you can run different tests

• ./brickTest
• ./readerTest
• ./readerTestWithRoot



Quick Introduction 
to C++11



Useful New Features
•Automatic Type Deduction
•Null Pointer
• Smart Pointer
•Range-based for Loops



Automatic Type Deduction : auto

• auto is a placeholder for a type
• Enables type inference

• can be used when declaring variables in different scopes 
• namespaces, 
• Blocks, or 
• initialization statement of for loops

• Using auto usually means less code

auto i = 42; // i is an int
auto l = 42LL; // l is an long long
auto p = new foo(); // p is a foo*



Null Pointer : nullptr

• Zero (0) used to be the value of null pointers
• Problem: the implicit conversion to integral types

• The keyword nullptr denotes a value of type std::nulptr_t
• Represents the null pointer literal

• No more implicit conversion to integral types.



Smart Pointers

• A wrapper class over a pointer with operators like * and -> 
overloaded

• The objects of smart pointer class look like pointer, but can do many 
things that a normal pointer can’t like automatic destruction
• we don’t have to explicitly use delete

• Destructor is automatically called when an object goes out of scope
• The dynamically allocated memory is automatically deleted



Types of Smart Pointers

• unique_ptr
• Should be used when ownership of a memory resource does not have to be 

shared 
• It doesn't have a copy constructor, but it can be transferred to another 
unique_ptr

• shared_ptr
• Should be used when ownership of a memory resource should be shared

• weak_ptr
• Holds a reference to an object managed by a shared_ptr, but does not 

contribute to the reference count; 



Allocating Memory

• make_shared<T>
• a non-member function for allocating memory for the shared object and the 

smart pointer

• Creating a smart pointer of type Foo

auto foo = std::make_shared<Foo>();



Example: 
(brickTest.cc) 

// Main framework task
int Nevents = 10;
auto jetscape = make_shared<JetScape>("./jetscape_init.xml",Nevents);
jetscape->SetId("primary");

// Empty initial state
auto ini = make_shared<InitialState>();
ini->SetId("InitialState");

// mono-energetic particle gun, parameters in XML file
// 25% probability each for g, u, d, s
auto pGun= make_shared<PGun> ();

// Simple brick, parameters in XML file
auto hydro = make_shared<Brick> ();

// Energy loss manager, parameters in XML file
auto jlossmanager = make_shared<JetEnergyLossManager> ();

…

//Remark: For now modules have to be added in proper "workflow" order
jetscape->Add(ini);
jetscape->Add(pGun);
jetscape->Add(hydro);

…

// Intialize all modules tasks
jetscape->Init();

// Run JetScape with all task/modules as specified ...
jetscape->Exec();

jetscape->Finish(); 



Ranged-Based for Loops

• Like the foreach paradigm of iterating over collections
• useful when you just want to get and do something with the elements 

of a collection/array 
• you don't care about indexes, iterators or number of elements

std::vector<int> v = {1,2,3,4,5};
for(auto i : v){

std::cout << i << ‘ ‘;
}



Task-Based Framework And
Adding a Hello World Task/

Module



Task-Based Framework 
• JETSCAPE Framework provides base classes
• JetScapeTask

• All the tasks in the framework are 
subclasses of this class

• Methods called recursively by framework
• Init()
• Exec()
• Finish()
• Clear()

• Each task must implement these methods



Add Your Module: Hello World! 
• Add the header file
• Overrides JetScapeTask
• Methods are virtual
• Will be implemented

in source file 

To add you own task or module:
- Create a header file *.h
- Create a source file *.cc
You can add these test files
in the framework folder. If your 
code ends with .cc then cmake will
automatically find and compile!

#ifndef HELLOWORLDMODULETEST_H
#define HELLOWORLDMODULETEST_H
#include "JetEnergyLossModule.h"
using namespace Jetscape;
class HelloWorld : public JetScapeTask
{
public:
HelloWorld();
virtual ~HelloWorld();
virtual void
virtual void Init();
virtual void Exec();
virtual void Clear();
virtual void Finish();
};
#endif



Add Your Module: 
Hello World! 

• Add the source file
• Implements JetScapeTask

methods

#include "HelloWorldModuleTest.h"
#include<iostream>

using namespace Jetscape;

HelloWorld::HelloWorld()
{

SetId("HellowWorld");
VERBOSE(8);

}

HelloWorld::~HelloWorld()
{

VERBOSE(8);
}

void HelloWorld::Init()
{

INFO<<"Initialize HelloWorld Module ...";
}

void HelloWorld::Exec()
{

INFO<<"This is the Module Executing... HELLO WORLD!...";
}

void HelloWorld::Clear()
{

INFO<<"This is the Module Clearing...";
}

void HelloWorld::Finish()
{

INFO<<"This is the Module Finishing...";

}



Add Your Hello World Module in Brick test 

• Include the header file
• #include "HellowWorldModuleTest.h“

• Create a pointer
• auto helloWorld = make_shared<HelloWorld> ();

• Attach the pointer to the main task
• jetscape->Add(helloWorld);

• Framework will run your module 


