JETS and substructure, a review

Leticia Cunqueiro
ORNL

2nd JETSCAPE winter school, 10th January 2019
College Station, Texas
The jet shower

Large radiation probability, soft and collinear divergences

Gluon emission

\[\int \frac{dE}{E} \frac{d\theta}{\theta} \gg 1 \]

Non-perturbative physics

\[\alpha_s \sim 1 \]
Jets are energetic, collimated bunches of particles
A jet definition, is a projection of the **hadronic level to partons** (quarks and gluons)

Key requirement of the projection: infrared and collinear safety, to preserve calculability

Projections are not unique

The projection

\[
\{P_i\} \xrightarrow{\text{jet definition}} \{j_k\}
\]

particles, 4-momenta, calorimeter towers,
Jet Definition: an example of a sequential recombination algorithm

Two parameters, R and $p_{t,min}$
(These are the two parameters in essentially every widely used hadron-collider jet algorithm)

$$d_{ij} = \min(p_{t_i}^2, p_{t_j}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

Sequential recombination algorithm

1. Find smallest of d_{ij}, d_{iB}
2. If ij, recombine them
3. If iB, call i a jet and remove from list of particles
4. Repeat from step 1 until no particles left

Inclusive k_t algorithm

S.D. Ellis & Soper, 1993
Catani, Dokshitzer, Seymour & Webber, 1993
The sequential recombination family of algorithms

Perfect cones

Ordered in k_t

Ordered in angle

anti-k_t algorithm

k_t algorithm

Cambridge/Aachen

$$d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \frac{\Delta y^2 + \Delta \phi^2}{R^2}$$

$$d_{iB} = p_{ti}^{2p}$$

$p = 1$ k$_t$ algorithm

$p = 0$ Cambridge/Aachen algorithm

$p = -1$ anti-$_k_t$ algorithm
The perturbative and non-perturbative components of the jet

Optimal value of R depends in what component we want to study

Dasgupta, Magnea, Salam *JHEP* 0802 (2008) 055
The perturbative and non-perturbative components of the jet

The region of low jet momentum is dominated by non-pertubative corrections.
The ratio of cross sections for different R is sensitive to the transverse energy profile.

Dasgupta, Dreyer, Salam, Soyez, *JHEP* 1606 (2016) 057
How to look inside a jet?

- Define jet shape variables: a function of the jet constituents. Examples: jet mass, angularity, pTD (generalized angularities), FF...

- Recluster the jet constituents with a hierarchical algorithm. Unwind the clustering history of the jet to access the jet tree. Examples: n-subjettiness, zg, nSD,...groomed shapes in general...

Jet substructure pays a main role in LHC analysis, for instance in q/g discrimination or tagging of boosted objects. In heavy ion collisions, we use it to probe the microscopic structure of QCD matter in AA.
Jet shapes: differential constrain

Large region in mass where NP effects (yellow bands, right plot) are negligible

-> great constrain to perturbative aspects of parton showers
Particles that are uncorrelated to the hard scattering will contaminate the jet.

The jet momentum can be adjusted, the jet area is the **background susceptibility**

The area-based equation below can be extended to shapes, to perform a zero-biased background subtraction, simultaneous in jet pt and shape

Salam, Cacciari et al

Other methods modify the event by removing particles according to some prescription. Not bias-free.

Constituent Subtraction (Berta, Spousta, Miller, Leitner, 1403.3108)
SoftKiller (MC, Salam, Soyez, 1407.0408)
PUPPI (Bertolini, Harris, Low, Tran, unpubl.)

\[\Delta p_t = \rho A \pm (\sigma \sqrt{A}) \]
Pileup subtraction

The event pileup is characterised by ρ and ρ_m. Ghost particles are added uniformly in the acceptance, each mimicking a pileup-like component in a region of area A. The sensitivity of the shape to bkg is determined by calculating its derivatives with respect to the transverse momentum and mass of the ghosts. The value of the shape is then extrapolated by a Taylor series to zero pileup.

Soyez, Salam et al
AIM: Limit contamination of QCD background in a controlled way while retaining the bulk of perturbative radiation -> interesting idea to export to HI!
Example of substructure in pp: N-Subjettiness

\[
\tau_N = \frac{\sum p_{T,i} \text{Min}(\Delta R_{i,1}, \Delta R_{i,2}, \ldots, \Delta R_{i,N})}{R_0 \sum_i p_{T,i}}
\]

tau2/tau1->0 means that the jet is 2-prong

tau2/tau1->1 the jet has more prongs than just 2

tau2/tau1 measures how well the radiation is aligned relative to returned axes.

Changing the reclustering algorithm allows to probe different splittings in the jet.
Example substructure in pp: aperture angle

Angular separation of different splittings in the jet
Example of groomed substructure pp: momentum imbalance

No jet p_T dependence, as expected if z_g in vacuum is a valid proxy for the Altarelli-Parisi splitting kernel, universal $1/z$ behaviour.
Jet substructure observables

Difficult to find a jet shape that is not correlated/anticorrelated with the jet mass

In order to extract maximal information (ie about jet quenching), the more uncorrelated the set of observables, the better

ATLAS Simulation Preliminary

$\sqrt{s} = 13$ TeV, QCD Jet

$P_T^{\text{true}}=[1000,1500]$ GeV

$m^{\text{had}} > 40$ GeV, $|\eta|^{\text{true}} < 2.0$
Jets in Heavy Ion Collisions
Several fundamental questions to answer

- Can we probe the partonic degrees of freedom within the strongly-coupled QGP? Do we have access to the Moliere regime? Can we detect scatterings off quasi-particles via large angle deflection of jets/constituents?
- Is color coherence at work and what are the critical angles?
- Is flavour hierarchy respected in medium?
- Related to the 3 previous points: how does energy loss depend on the jet substructure?
- Can we experimentally isolate specific aspects of the in-medium shower that are under better theoretical control?
Large pedestal background to subtract

Pythia events embedded into PbPb data

Large uncorrelated background per unit area

same techniques as in HEP
Jet energy and shape irresolution to unfold

Left Diagram:
- **ALICE 0-10% Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV**
- $R = 0.2$
- $|\eta_{jet}| < 0.5$
- **Random cones**
 - $\sigma = 5.8$ GeV/c
 - $\mu^{+} = 0.6$ GeV/c
 - $\sigma^{-} = 4.9$ GeV/c
- **Embedded tracks**
 - $\sigma = 5.9$ GeV/c
 - $\mu^{+} = 0.3$ GeV/c
 - $\sigma^{-} = 5.1$ GeV/c

Right Diagram:
- **ALICE 0-10% Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV**
- $60 < p_{T,\text{ch jet}} < 80$ GeV/c
- Solid: Bkg. fluct.
- Open: Bkg. fluct. + det. effects
- **Pb-Pb:** Area-based
- **Pb-Pb:** Constituent
- **p-Pb $\sqrt{s_{NN}} = 5.02$ TeV**
Large combinatorial background to suppress

Large fake jet contribution limits inclusive jet measurements at low jet p_T/large R

Data-driven techniques based on semi-inclusive coincidence measurements can be applied to subtract combinatorial background. Jet event mixing, ML are other approaches under exploration.

The uncorrelated background generates fake subleading prongs at large angles (where area is maximal).
Does the energy loss depend on the jet shape?

No apparent dependence observed
Does the energy loss depend on the jet shape?

Interesting exploration of the phase space of emissions
Some effects at the tails
Does the energy loss depend on the jet shape?

The jet cores seem to get narrower and harder in medium relative to vacuum, in agreement with a quark-like fragmentation.
Does the energy loss depend on the jet shape?

The way radiation is aligned relative to the chosen splittings (a very different set of splittings was considered) does not change in medium relative to vacuum.
Momentum imbalance

Suppression of symmetric splittings at large angles
Enhancement of collinear splittings
Interesting implications concerning formation time
The Lund plane

- A general 2D map of splittings, most of other substructure observables are derived from it
- Relevant scales like the splitting scale k_T, formation time, constant mass, can be marked as simple line cuts on the plane
- Powerful tool to isolate different physics ingredients in the jet quenching calculations (ideal tool for JETSCAPE)

The Lund plane in vacuum

plot from G. Salam, QM18

\[d^2 P = 2 \frac{\alpha_s(k_{\perp})}{\pi} C_R d\ln(z\theta) d\ln(\frac{1}{\theta}) \]

Iterative declustering:

Unwind the CA clustering (angular ordering in vacuum)

At each step, register the \(k_T, \Delta R \) coordinates

Follow the hardest branch at each step

In vacuum, flat 2D density except for variation of the coupling with \(k_T \)
The Lund plane in medium

Angular ordering not expected in medium, so using CA to recluster is an operational choice

New scales appear due to the medium and divide the phase space: formation time, decoherence time, decoherence angle...

\[t_f < t_d < L \] vacuum splittings inside the medium

In medium splittings with \(t_d > L \) : not resolved by the medium

\[t_d \lesssim t_f \] splitting kinematics dominated by medium effects Lund plane not filled with the pQCD uniform probability

Map different contributions: hadronization

Non-perturbative effects can be removed/isolated by cutting at $\ln(k_T) > < 0$

Map different contributions: uncorrelated background

Fake splittings appear at large angles $\theta \sim R$ and lowish z

They contribute to the groomed signal (above red line representing SD condition $z_{cut} > 0.1, \theta=0$)
Map different contributions: correlated background

The correlated background or medium response is the background that gets “excited by the jet” and ends up in the jet cone.

As correlated bkg, it cannot be suppressed using standard techniques like event mixing or coincidence measurements.

Lund plane in Pb-Pb, it can be measured

Probability density difference: Data - PYTHA embedded into Pb-Pb events

Useful observable are 1D projections in bins of scale k_T

Quite differential, requires plenty of statistics
The density map of splittings is deformed in Pb-Pb relative to vacuum, but this deformation is not accompanied by an increase in the number of hard splittings selected by SD.
Some thoughts on data to MC comparison in Heavy Ions in the context of JETSCAPE

1. The way jet observables are presented by the collaborations:

 - Ideal: Fully corrected to particle level, can be directly compared to MC

 - Not fully corrected observables. Sometimes unfolding is not possible, responses can be severely off-diagonal leading to unstable unfolding. Then, MC has to be smeared according to the responses the experiments provide.

Example case: ALICE measured the zg vs ΔR in a given jet p_T bin at uncorrected level, and provides a 6D response ($zg^{\text{part}}, \Delta R^{\text{part}}, p_T^{\text{part}}, zg^{\text{emb}}, \Delta R^{\text{emb}}, p_T^{\text{emb}}$)
Some thoughts on data to MC comparison in Heavy Ions in the context of JETSCAPE

2. Strategies for MC to data comparison:

- Selective choice of observables when extracting fundamental properties like q_{hat}: choose those that are less affected by model-dependent components like hadronization.

- Isolation of physics ingredients: the modular nature of JETSCAPE allows to test what physics ingredients contribute to what regions of the jet phase space and to test them experimentally.

A possible example: fill the Lund map switching on/off the different physics components of the JETSCAPE framework. Is there a region of the 2D phase space map that gets modified by a single physics ingredient? Then opportunity to test the model and propose an experimental observable.
• THANKS!
Fake splittings

- Uncorrelated background adds splittings at low z_g.
- Fake splittings appear at large R_g due to the background.
- n_{SD} appears relatively robust to the presence of background.
Fundamental question in the physics of heavy ion collisions:

How do collective phenomena and macroscopic properties of matter arise from the elementary interactions of a non-abelian quantum field theory?

<table>
<thead>
<tr>
<th>Opportunities</th>
<th>Tools</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraining equilibrium properties of QCD matter (eos, $\eta/s, \xi, \gamma_\pi$...)</td>
<td>Flow and fluctuation measurements in AA</td>
<td>advanced</td>
</tr>
<tr>
<td>Measuring medium properties with hard auto-generated probes (\hat{q}, \hat{e}, T, ...)</td>
<td>Quarkonia, R_{AA}'s, photons</td>
<td>in progress</td>
</tr>
<tr>
<td>Accessing microscopic structure of QCD matter in AA</td>
<td>Jet substructure, heavy flavor transport</td>
<td>in reach</td>
</tr>
<tr>
<td>Controlling initial conditions</td>
<td>pA (light AA) runs, npdf global fits, small-x</td>
<td>in reach</td>
</tr>
<tr>
<td>Testing hydrodynamization and thermalization</td>
<td>Combined jet and flow analyses</td>
<td>strategy t.b.d.</td>
</tr>
<tr>
<td>Understanding “heavy-ion like behavior” in small systems (pp, pA)</td>
<td>Flow, hadrochemistry, jets</td>
<td>recent surprises</td>
</tr>
</tbody>
</table>

Slide stolen from Urs Wiedemann, Workshop on the physics of HL-LHC
(semi)-ANALYTIC

- Gives insight into what physics is relevant where (energy loss, decoherence, etc.)
- Can inspire what to measure
- Cannot capture all dimensions of full experimental analysis

Monte Carlo Event Generator

- Gives ultimate realism (accuracy depends on what’s inside)
- Can in principle include full medium embedding & subtraction (but that’s often work in progress)
- Risks looking like a black box

Let’s suppose the cat is spherical.

How to calculate the volume of a cat?

[This morning’s newsletter]
Jet shapes: generalized angularities

Diagram from Thaler et al

Exploring systematically the phase space of jet shapes
Plethora of techniques

c. 2012

Jet Declustering

- Seymour93
- YSplitter
- ATLASTopTagger
- Planar Flow
- Pruning
- TW
- Trimming
- Twist

Jet Shapes

- N-jettiness
- N-subjettiness (Kim)
- N-subjettiness (TvT)

Matrix-Element

- Templates
- JHTopTagger
- CMSTopTagger
- HEPTopTagger (+ dipolarity)
- Shower Deconstruction
- Multi-variate tagger
- Qjets

- EEC