

Modeling coherence effects of parton energy loss: heavy quark

Weiyao Ke, Yingru Xu, Wenkai Fan, and Steffen Bass

Duke University

JetScape Workshop Texas A&M University January 11, 2019


This work is supported by US Department of Energy Grant no. DE-FG02-05ER41367, and National Science Foundation Grant no. ACI-1550225.

- 1 Transport of heavy quark
- Coherence of medium-induced radiation
- 3 Interfacing vacuum-like and medium-induced radiation
- 4 Summary & work in progress

Transport of heavy quark (at least perturbatively)

See Tianyu Dai's talk Sunday

 $q \sim m_D$: many body, diffusion model

- Transport of heavy quark
- 2 Coherence of medium-induced radiation
- 3 Interfacing vacuum-like and medium-induced radiation
- Summary & work in progress

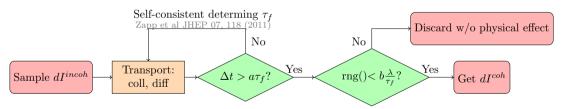
4 / 15

Coherence of medium-induced radiation

• Radiation is coherent within $\tau_f \sim 2\omega/k_\perp^2$, where interactions adds up coherently.

Figure by P. Arnold

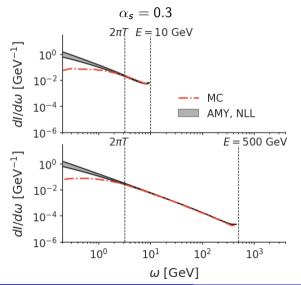
ullet The LPM effect: N coherent scatterings pprox 1 scattering, $dI^{
m coh} \sim dI^{
m incoh}/N \sim dI^{
m incoh} rac{\lambda}{ au_{
m f}}.$


Table: τ_f compared to other length scales

Mean free path	$\lambda \sim m_D^2/\hat{q} \lesssim 1$ fm	$\lambda \ll \tau_f$.
Bjorken expansion time scale	$T^3 d\tau/dT^3 = \tau$	comparable to $ au_f$
Path length in QGP fireball	a few fermi	comparable to $ au_f$.

A "non-local" problem for Boltzmann equation

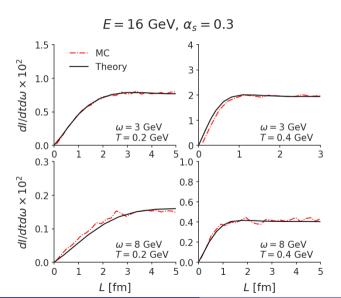
- Interpret τ_f as lifetime for a virtual state "q + g (preformed gluon)" to decay. Energy \gg scattering rate \gg width.
- Treat them as "quasi-particles" in the Boltzmann transport with
 - \triangleright x^{μ} and p^{μ} of the original quark.
 - Cross-section / diffusion coefficient with color charge resembling a gluon.
 - "Decay" probability λ/τ_f after $\Delta t = \tau_f$.



How accurate is this method? Tune a, b to match semi-analytic calculation in idealized cases!

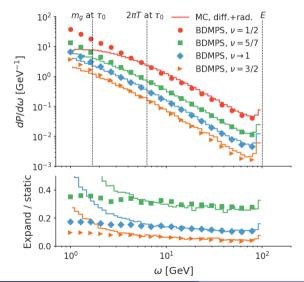
Ke. Xu. and Bass. arXiv:1810.08177.

Validate the implementation: infinite medium limit



- $a \sim 1.0$ and $b \sim 1.4$.
- Theoretical spectra $dI/d\omega$ from AMY calculation to NLL order Arnold and Dogan, PRD 78 065008.
- $\omega < 2\pi T$, goes back to incoherent simulation (blue lines)
- $\omega > 2\pi T$, agree with theoretical results within $\pm 10\%$

Validate the implementation: finite medium



- Path-length (L) dependent differential rate $dI/d\omega$ Caron-Huot and Gale, PRC 82 064902.
- Achieve similar level of accuracy as the previous case.

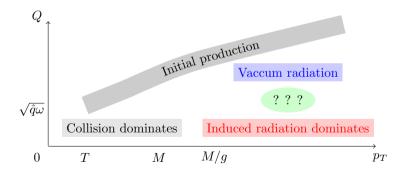
Validate the implementation: expanding medium

• Differential spectra $dI/d\omega$ have been calculated in an expanding medium Baier et al, PRC 58 1706.

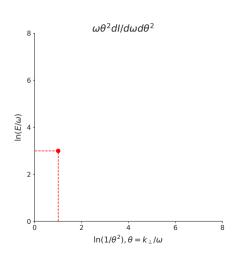
$$T^3 = T_0^3 \left(\frac{\tau_0}{\tau}\right)^{2-\frac{1}{\nu}}$$

Static: $\nu = 1/2$. Bjorken: $\nu = 1$.

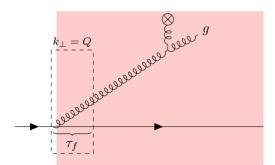
- Expansion time scale $\frac{T^3 d \tau}{d T^3} = \frac{\tau}{2-1/\nu}$.
- Compare to MC (diffusion + radiation) with $\hat{q}_0 = C_A m_D^2 T$, $\alpha_s = 0.3$.
- Good agreement in the LPM region from static limit to fast expansion.


- Transport of heavy quark
- Coherence of medium-induced radiation
- 3 Interfacing vacuum-like and medium-induced radiation
- 4 Summary & work in progress

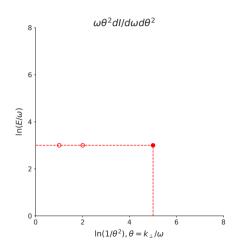
Interfacing Vacuum-radiation and medium-induced radiation


To include virtuality effect:

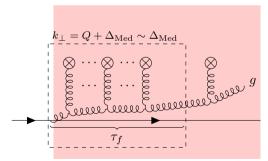
- DGLAP evolution without a "medium", N_{vac} .
- Medium-induced calculation, N_{med} .
- Where do they meet?



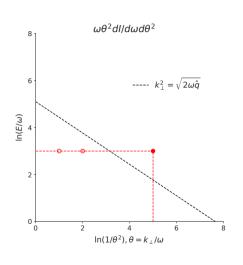
Vacuum-like and medium-induced radiation PRL 120 232001 P. Caucal et al



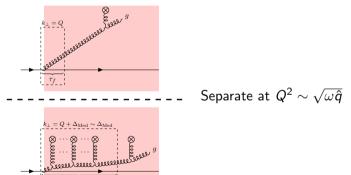
- Vacuum branching w/ large Q.
- Very short formation time ω/Q^2 .
- Formed before it scatters with medium.
- Vacuum matrix-element works.



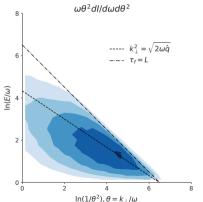
Vacuum-like and medium-induced radiation PRL 120 232001 P. Caucal et al.

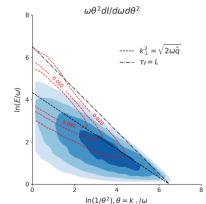


- A branching start with small Q, large τ_f .
- Many medium interactions contribute within τ_f .
- $\Delta_{\rm Med} \gg Q$, effectively an on-shell particle.
- This is a medium-induced branching.



Vacuum-like and medium-induced radiation PRL 120 232001 P. Caucal et al

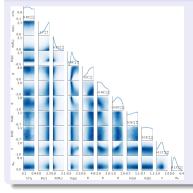

- ullet Draw a line where $Q\sim \Delta_{
 m Med}.$
- $N \approx N_{\rm vac}({\rm stops~at~}Q^2 \sim \sqrt{\omega \hat{q}}) + N_{\rm med}$

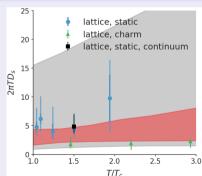


Since we only care about the heavy flavor for now.

- 1. In Pythia final state radiation: find all gluons radiated by the heavy quark.
- 2. Treat these gluons as "performed", adding their k^{μ} back to the heavy quark.
- 3. Do transport until $\Delta t = \tau_f(\Delta t)$.
- 4. Look at how much k_{\perp} it gains from medium Δk_T^2 , reject this radiation. If $k_{\perp}^2(t=\tau_f) > R \times \Delta k_T^2$: redo this branching. Else: remove this branching.

13 / 15

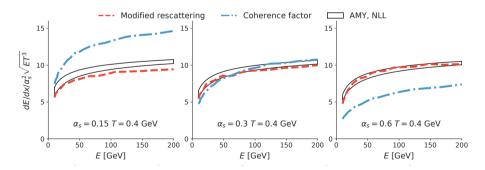



- Transport of heavy quark
- 2 Coherence of medium-induced radiation
- Interfacing vacuum-like and medium-induced radiation
- 4 Summary & work in progress

Summary

- Improving LPM implementation. Quantitative agreement with theoretical calculations.
- Interfacing vacuum-like and medium-induced radiation.
- Improvements are implemented in the LIDO model.

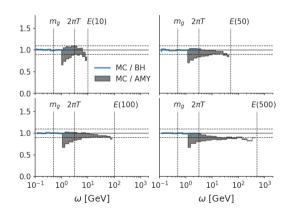
An updated Bayesian analysis is in progress (Preliminary!)

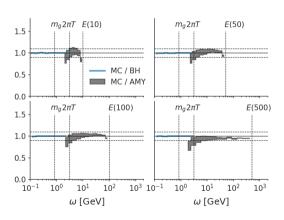

These improvements should help increase the fidelity of such an extraction.

Backup: Compare to the old approach

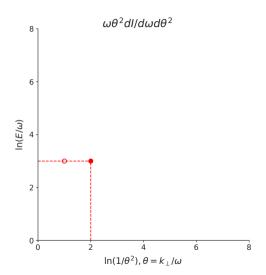
In our <u>old</u> approach, LPM effect is introduced as a coherence factor in the $2 \rightarrow 3$ matrix-element, without multiple scatterings.

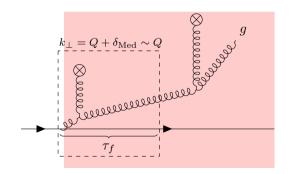
$$\int \frac{d\sigma_{23}}{d\hat{t}dk^3} d\hat{t} \frac{dk^3}{2k} \to \int \frac{d\sigma_{23}}{d\hat{t}dk^3} 2\left[1 - \cos\left(\frac{\Delta t}{\tau_f}\right)\right] d\hat{t} \frac{dk^3}{2k}, \tau_f \sim \frac{2k}{k_\perp^2}$$




Backup: Ratio to AMY-NLL

$$\alpha_{\rm s}=0.1$$





Backup: a few interactions

- Vacuum branching w/ moderate Q.
- O(1) interaction with medium within τ_f .
- ullet Option: use MATTER when $\Delta_{
 m Med} \ll {\it Q}$.

