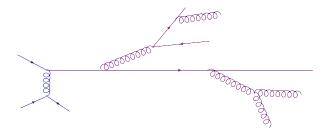

A unified picture for in-medium jet evolution in pQCD

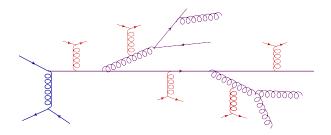
Edmond lancu IPhT Saclay & CNRS

with P. Caucal, A. H. Mueller and G. Soyez (PRL 120 (2018) 232001 + w.i.p.)

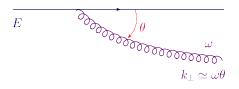


Outline

- Jet evolution in a quark-gluon plasma at weak coupling
- Two types of radiation...
 - vacuum-like: bremsstrahlung (parton virtualities)
 - medium-induced radiation : BDMPS-Z (collisions in the plasma)
- ... which are separately well understood
- They can be factorized within controlled approximations in pQCD
- The "vacuum-like" radiation too is modified by the medium (constraints on the associated phase-space)
- Probabilistic picture allowing for Monte-Carlo implementation
- Encouraging preliminary results (jet R_{AA} , fragmentation function)


Jet evolution in a quark-gluon plasma

- The leading particle (LP) is produced by a hard scattering
- It subsequently evolves via radiation (branchings) ...
 - Bremsstrahlung triggered by the parton virtualities


Jet evolution in a quark-gluon plasma

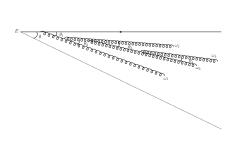
- The leading particle (LP) is produced by a hard scattering
- It subsequently evolves via radiation (branchings) ...
 - Bremsstrahlung triggered by the parton virtualities

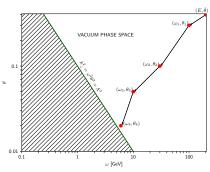
- ... and via collisions off the medium constituents, leading to...
 - ullet transverse momentum broadening: $\Delta k_\perp^2 \simeq \hat{q} \Delta t$
 - additional, medium-induced, radiation
 - wash out the colour coherence (destroy interference pattern)

Jets in the vacuum

$$t_{\rm f} \simeq \frac{\omega}{k_\perp^2} \simeq \frac{1}{\omega \theta^2}$$

$$\mathrm{d}\mathcal{P} \simeq \frac{\alpha_s C_R}{\pi} \frac{\mathrm{d}\omega}{\omega} \frac{\mathrm{d}\theta^2}{\theta^2}$$

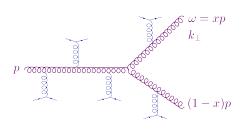

- Formation time $t_{\rm f}$: the time it takes the daughter partons to lose their quantum coherence (overlap in transverse direction)
- Determined by the virtuality Q^2 of the original parton: $t_{
 m f} \sim E/Q^2$
- Log enhancement for soft $(\omega \ll E)$ and collinear $(\theta \ll 1)$ gluons
- Parton cascades: successive emissions are ordered in
 - energy $(\omega_i < \omega_{i-1})$, by energy conservation
 - angle $(\theta_i < \theta_{i-1})$, by color coherence
- Double-logarithmic approximation (DLA): strong double ordering


Lund plot for vacuum emissions at DLA

• Strong ordering in both energies and angles: $\left[\alpha_s \ln(E/\omega) \ln(\bar{\theta}/\theta)\right]^n$

$$E \gg \omega_1 \gg \omega_2 \gg \cdots \gg \omega$$
 & $\bar{\theta} \gg \theta_1 \gg \theta_2 \gg \cdots \gg \theta$

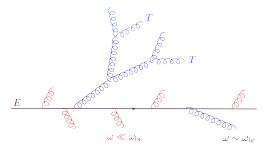
- ullet the maximal angle allowed for the first emission
- Each emission (ω_i, θ_i) : a point in the phase-space diagram



• Evolution stopped by hadronisation: $k_{\perp} \simeq \omega \theta \gtrsim \Lambda_{\rm QCD}$

Medium-induced radiation

• In medium: collisions introduce a lower limit on the transverse momentum ...

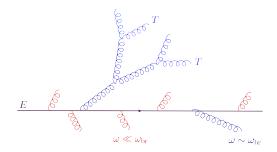

$$t_{
m f} = rac{\omega}{k_\perp^2} \;\; \& \;\; k_\perp^2 \gtrsim \hat{q} t_{
m f}$$
 $t_{
m f} \, \lesssim \, \sqrt{rac{\omega}{\hat{q}}}$

- ... hence an upper limit on the formation time!
- ullet Effective only so long as $t_{
 m f} < L$ (medium size), hence for $\omega \le \omega_c \equiv \hat{q} L^2$
- ullet Two types of emissions occurring inside the medium $(t_{
 m f} < L)$:
 - ullet vacuum-like: $k_\perp^2\gg\hat{q}t_{\mathrm{f}}$, or $t_{\mathrm{f}}\ll\sqrt{\omega/\hat{q}}$
 - ullet medium-induced: $k_\perp^2 \simeq \hat{q} t_{
 m f}$, or $t_{
 m f} \simeq \sqrt{\omega/\hat{q}}$

Mini-jets from multiple branching

$$\mathrm{d}\mathcal{P} \, \sim \, lpha_s \, rac{\mathrm{d}\omega}{\omega} \, rac{L}{t_\mathrm{f}(\omega)} \, \sim \, lpha_s \, \sqrt{rac{\hat{q}L^2}{\omega}} \, rac{\mathrm{d}\omega}{\omega} \quad ext{(BDMPS-Z)}$$

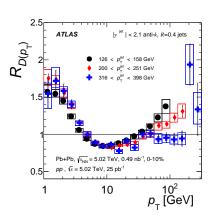
- Multiple branching becomes important when $\omega \lesssim \omega_{\rm br} \equiv \alpha_s^2 \hat{q} L^2$
- Soft primary gluons with $\omega \lesssim \omega_{\rm br}$ occur event by event

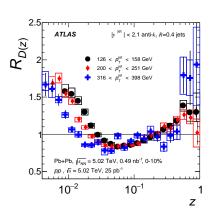


- In turn, they generate mini-jets via democratic branchings: $x \sim 1-x$
 - ullet energy transmitted to many soft quanta which thermalize: $\omega \sim T$
 - ullet typical energy loss by the jet $\Delta E \sim \omega_{
 m br}$, large fluctuations

Mini-jets from multiple branching

$$\mathrm{d}\mathcal{P} \sim lpha_s \, rac{\mathrm{d}\omega}{\omega} \, rac{L}{t_\mathrm{f}(\omega)} \, \sim \, lpha_s \, \sqrt{rac{\hat{q}L^2}{\omega}} \, rac{\mathrm{d}\omega}{\omega} \quad ext{(BDMPS-Z)}$$

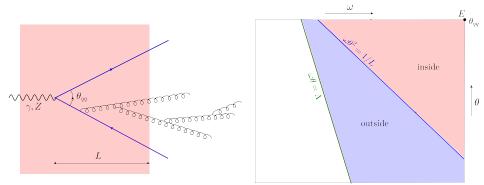

- Multiple branching becomes important when $\omega \lesssim \omega_{\rm br} \equiv \alpha_s^2 \hat{q} L^2$
- Soft primary gluons with $\omega \lesssim \omega_{\rm br}$ occur event by event



• Energy loss at large angles: a natural explanation for di-jet asymmetry J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

Intra-jet nucler modifications

- Medium-induced radiation propagates at large angles, outside the jet cone
- The LHC data also show nuclear modifications for the energy distribution inside the jet cone



• Can vacuum-like radiation be modified by the medium ?

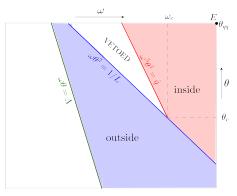
Vacuum-like emissions (VLE)

- P. Caucal, E.I., A. H. Mueller and G. Soyez, arXiv:1801.09703 (PRL)
 - ullet A jet initiated by a colorless $qar{q}$ antenna (decay of a boosted γ or Z)
 - just to simplify the arguments about color coherence
 - ullet The antenna propagates through the medium along a distance L

• Emissions $(t_f = \frac{1}{\omega \theta^2})$ can occur either inside $(t_f \le L)$, or outside $(t_f > L)$

VLEs inside the medium

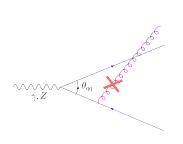
• For $\omega \leq \omega_c$, the medium introduces an upper limit on $t_{\rm f}$:

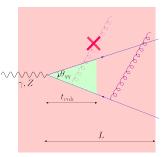

$$t_{
m f}\,\lesssim\,\sqrt{rac{\omega}{\hat{q}}}\,\leq\,L$$

No emission within the range

$$\sqrt{\frac{\omega}{\hat{q}}}\,<\,\frac{1}{\omega\theta^2}\,<\,L$$

• End point of VETOED at

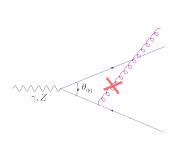

$$\omega_c = \hat{q}L^2$$
, $\theta_c = \frac{1}{\sqrt{\hat{q}L^3}}$

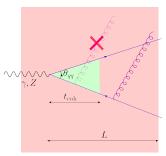


- VLEs in medium occur like in vacuum, but with a smaller phase-space
 - typical values: $\hat{q} = 1 \, \mathrm{GeV^2/fm}, \ L = 4 \, \mathrm{fm}, \ \omega_c = 50 \, \mathrm{GeV}, \ \theta_c = 0.05$
- ullet Energy loss & p_{\perp} -broadening during formation are negligible

Color (de)coherence

- ullet In vacuum, wide angle emissions $(heta> heta_{qar q})$ are suppressed by color coherence
 - the gluon has overlap with both the quark and the antiquark


ullet In medium, color coherence is washed out by collisions after a time $t_{
m coh}$


$$\hat{q}\Delta t \gtrsim \frac{1}{(\theta_{a\bar{q}}\Delta t)^2} \implies \Delta t \gtrsim t_{\mathrm{coh}} = \frac{1}{(\hat{q}\theta_{a\bar{q}}^2)^{1/3}}$$

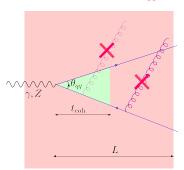
(Mehtar-Tani, Salgado, Tywoniuk; Casalderrey-Solana, E. I., 2010–12)

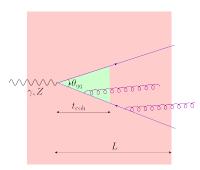
Color (de)coherence

- ullet In vacuum, wide angle emissions $(heta> heta_{qar q})$ are suppressed by color coherence
 - the gluon has overlap with both the quark and the antiquark

ullet In medium, color coherence is washed out by collisions after a time $t_{
m coh}$

$$t_{
m coh} = rac{1}{(\hat{q} heta_{qar{q}}^2)^{1/3}} \ll L \quad {
m if} \quad heta_{qar{q}} \gg heta_c \simeq 0.05$$

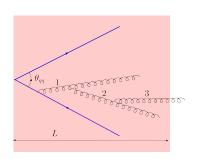

• Angular ordering could be violated for emissions inside the medium

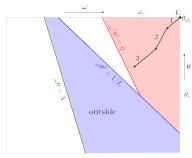

Angular ordering strikes back

But this is not the case for the VLEs!

$$heta > heta_{qar{q}} \quad \& \quad t_{
m f} = rac{1}{\omega heta^2} > t_{
m coh} \implies t_{
m f} \gtrsim \sqrt{rac{\omega}{\hat{q}}} : \;\; {
m not \; a \; VLE}$$

ullet Wide angle VLEs $(heta> heta_{qar{q}})$ have $t_{
m f}\ll t_{
m coh}$, hence they are suppressed

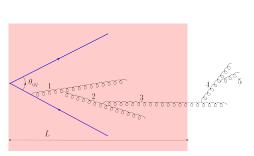


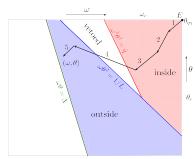


- ullet Emissions at smaller angles $(heta < heta_{qar{q}})$ can occur at any time
- Color decoherence via collisions plays no role for the VLEs

Vacuum-like cascades at DLA

- Previous arguments extend to a sequence of angular-ordered VLEs
 - rigorous in the double-logarithmic approximation
- ullet Formation time for the cascade pprox that of the last gluon
 - ullet a typical VL cascade has a formation time $\ll L$

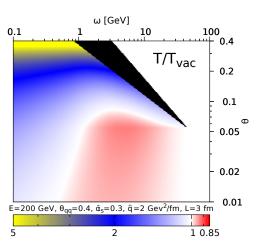




- ullet After formation, gluons propagate in the medium along a distance $\sim L$
 - additional sources for medium-induced radiation
 - ... and for vacuum-like emissions outside the medium

First emission outside the medium

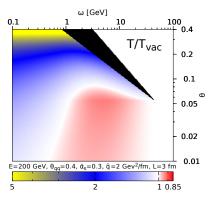
- ullet The respective formation time is necessarily large: $t_{
 m f}\gtrsim L$
- In-medium sources with $\theta \gg \theta_c$ lose coherence in a time $t_{\rm coh} \ll L$
- First outside emission can violate angular ordering
 - re-opening of the angular phase-space
- Subsequent "outside" emissions obey angular-ordering, as usual

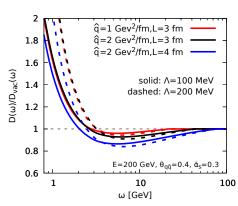


• Vetoed region + lack of angular-ordering for the first "outside" emission

Gluon distribution at DLA

Double differential distribution in energies and emission angles:

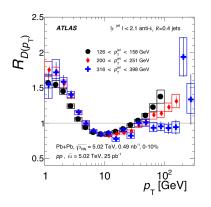

$$T(\omega, \theta) \equiv \omega \theta^2 \frac{\mathrm{d}^2 N}{\mathrm{d}\omega \mathrm{d}\theta^2}$$

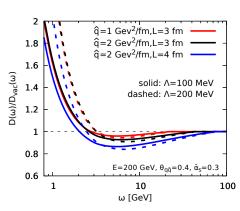


- $E = 200 \,\text{GeV}, \ \theta_{a\bar{a}} = 0.4$
- $\hat{q} = 2 \,\text{GeV}^2/\text{fm}, \ L = 3 \,\text{fm}$
- ullet $T/T_{
 m vac}=0$ in the excluded region
- $T/T_{\rm vac}=1$ inside the medium and also for $\omega>\omega_c$ and any θ
- $T/T_{\rm vac} < 1$ outside the medium at small angles $\lesssim \theta_c$
- ullet $T/T_{
 m vac}>1$ outside the medium at large angles $\sim heta_{qar q}$

Jet fragmentation function at DLA

$$D(\omega) \equiv \omega \frac{\mathrm{d}N}{\mathrm{d}\omega} = \int_{\Lambda^2/\omega^2}^{\theta_{q\bar{q}}^2} \frac{\mathrm{d}\theta^2}{\theta^2} T(\omega, \theta)$$





- Slight suppression at intermediate energies (from 3 GeV up to ω_c)
 - the phase-space is reduced by the vetoed region
 - ullet the amount of suppression increases with L and \hat{q}

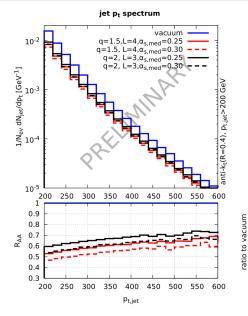
Jet fragmentation function at DLA

$$D(\omega) \equiv \omega \frac{\mathrm{d}N}{\mathrm{d}\omega} = \int_{\Lambda^2/\omega^2}^{\theta_{q\bar{q}}^2} \frac{\mathrm{d}\theta^2}{\theta^2} T(\omega, \theta)$$

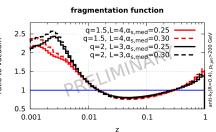
- Significant enhancement at low energy (below 2 GeV)
 - reopening of the phase-space by the first emission outside the medium
- Related proposal by Mehtar-Tani and Tywoniuk, arXiv:1401.8293

Monte Carlo implementation

(P. Caucal, E.I., A. H. Mueller and G. Soyez, in preparation)

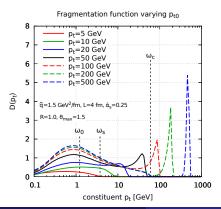

- So far, conceptually simple, but DLA approximations are very crude:
 - no energy conservation (small-x, gluons only), fixed coupling
 - no k_{\perp} -broadening, no medium-induced radiation
- Factorization remains true when assuming strong angular ordering alone
- Probabilistic (Markovian) description separately for
 - vacuum-like parton cascades with angular ordering
 - medium-induced cascades with BDMPS-Z branching rates
- MC implementation: convolution of three showers:
 - vacuum cascade inside the medium but outside the vetoed region
 - medium-induced cascade (in energy)
 - vacuum cascade outside the medium, down to the hadronisation line
- ullet Leading parton selected according to the cross-section for pp o 2 partons

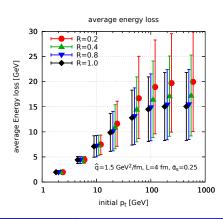
Monte Carlo implementation


(P. Caucal, E.I., A. H. Mueller and G. Soyez, in preparation)

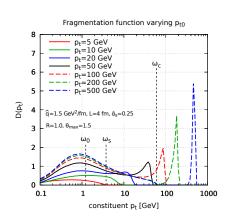
- So far, conceptually simple, but DLA approximations are very crude:
 - no energy conservation (small-x, gluons only), fixed coupling
 - ullet no k_{\perp} -broadening, no medium-induced radiation
- Leading-logarithmic approximation (angular ordering), with obvious benefits
 - \bullet full splitting functions, running coupling, quarks and gluons, $N_c=3$
 - Gaussian k_{\perp} -broadening ascribed by hand
 - reconstruction of the geometry in 3 dimensions
 - \bullet energy loss: partons with angles $\theta > \bar{\theta}$ are leaving the jet
 - no angular ordering for the first emission outside the medium
 - all the partons inside the medium can act as sources for it
- Not yet fully realistic for phenomenology:
 - ullet over-simplified medium description: no expansion, no hydro, just \hat{q}
 - no hadrons, just partons

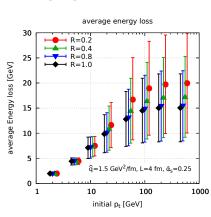
MC: preliminary results



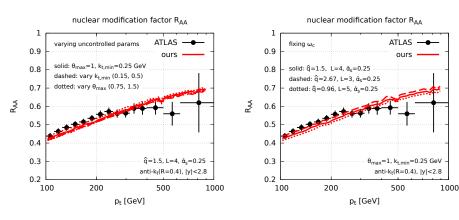

- Focus on 2 observables:
 - ullet nuclear modification factor R_{AA}
 - ullet ratio of FFs in AA and pp
- ullet Various choices for \hat{q} , L and $lpha_{s,\,\mathrm{med}}$

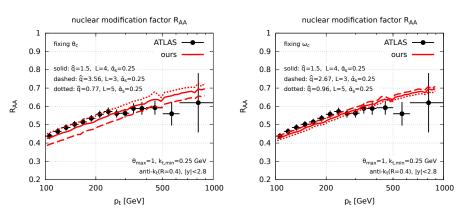
Medium-induced radiation alone


- Initial parton with energy $E \equiv p_{t0}$ generating a medium-induced cascade
- ullet Left: fragmentation function (or spectrum) $D(\omega) = \omega rac{\mathrm{d}N}{\mathrm{d}\omega}$
 - pronounced leading-particle peak so long as $E\gg \omega_s=\alpha_s^2\omega_c$
 - \bullet BDMPS-Z spectrum $D(\omega) \propto \frac{1}{\sqrt{\omega}}$ at $\omega < \omega_c$

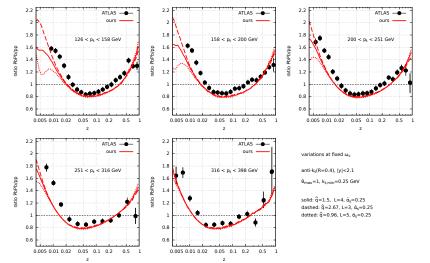


Medium-induced radiation alone

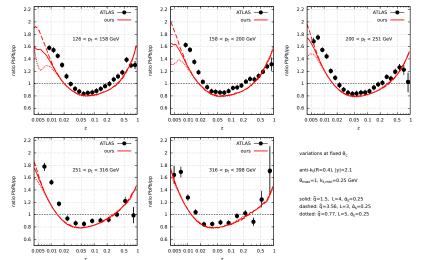

- ullet Initial parton with energy $E\equiv p_{t0}$ generating a medium-induced cascade
- Right: average energy loss by the jet + its fluctuations
 - ullet $\langle \Delta E \rangle$ becomes independent of E when $E \gg \omega_s$
 - ullet sizeable dependence upon the jet opening angle for $R \leq 0.8$

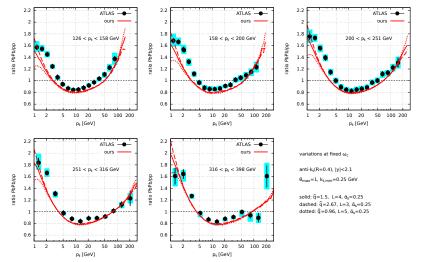

Boldly adding the data: R_{AA}

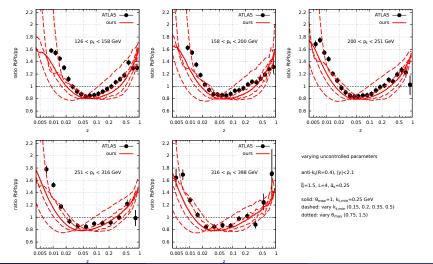
- Not a fit: just a set of "reasonable" values for the physical parameters
- "Uncontrolled parameters" = kinematical cuts: $k_{t, \min} \equiv \Lambda$, $\theta_{\max} \equiv \bar{\theta}$
 - results are remarkably robust
- Right plot: R_{AA} depends upon the medium only via $\omega_c=\hat{q}L^2/2$



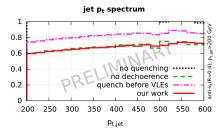
Boldly adding the data: R_{AA}

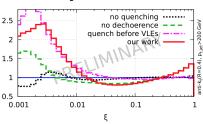

- Not a fit: just a set of "reasonable" values for the physical parameters
- Left plot: fixing θ_c , that is, the product $\hat{q}L^3$
 - results are changing, as expected
- Right plot: R_{AA} depends upon the medium only via $\omega_c=\hat{q}L^2/2$


- The same "canonical" values for the medium parameters as in the "best" description of R_{AA} (ATLAS data from arXiv:1805.05424)
- Fixing $\omega_c = \hat{q}L^2/2$: very small variations (except at very low z)


- The same "canonical" values for the medium parameters as in the "best" description of R_{AA} (ATLAS data from arXiv:1805.05424)
- ullet Fixing $heta_c$, that is, $\hat{q}L^3$: very small variations as well ...

- The same "canonical" values for the medium parameters as in the "best" description of R_{AA} (ATLAS data from arXiv:1805.05424)
- ullet Equally good results when plotted as a function of the constituent p_t ...


- The same "canonical" values for the medium parameters as in the "best" description of R_{AA} (ATLAS data from arXiv:1805.05424)
- ... but stronger variability with respect to the "uncontrolled parameters" :


Conclusions & perspectives

- Vacuum-like emissions inside the medium can be factorized from the medium-induced radiation via systematic approximations in pQCD
- Medium effects enter already at leading-twist level :
 - reduction in the phase-space for VLEs inside the medium
 - violation of angular ordering by the first emission outside the medium
- Angular ordering is preserved for VLEs inside the medium, like in the vacuum
- VLEs inside the medium act as sources for medium-induced radiation
- Probabilistic picture, well suited for Monte-Carlo implementations
- Preliminary MC results, which look promising
 - qualitative and even semi-quantitative agreement with the LHC data for jet fragmentation and the nuclear modification factor
- Perspectives: more realistic description of the medium, implementation in JETSCAPE

MC: preliminary results (2)

- "No quenching": just VLEs
 - no energy loss: $R_{AA} = 1$
 - ullet suppression in FF at small ξ
- "No decoherence": strict angular ordering (including first "outside" emission)
 - no effect on energy loss (R_{AA})
 - ullet little enhancement at small ξ
- "Quenching before VLEs": no VLEs inside the medium
 - \bullet R_{AA} larger & increasing with $p_{T, \rm jet}$
- Partons created inside the medium via medium-induced emissions significantly contribute to the soft radiation outside the medium