$\gamma_{\rm dir}$ +jet and π^0 +jet measurement in STAR

Nihar Ranjan Sahoo Texas A&M University Jan 12, 2019

JETSCAPE winter workshop 2019

Outline

• Semi-inclusive jet measurement in STAR γ_{dir} +jet and π^0 +jet In Au+Au and p+p data (π^0 +jet) at $\sqrt{s_{NN}}$ = 200 GeV

• Another facet of this measurement (in the STAR experiment) π^0 +jet $(\gamma_{dir}$ +jet) $\Delta \phi$ angular correlations

Introduction

- Quantitative understanding of parton energy loss in QCD medium
 - Parton energy loss as a function of path length, color factor, parton energy
 - Redistribution of lost energy inside the medium [Jet radius]
 - RHIC vs. LHC [dependence on temp. and initial gluon density]
- This can be addressed using vector-boson-tagged jet
 - Trigger energy approximates the initial recoil parton energy
 - At RHIC, γ_{dir} +jet is accessible

This is the first fully corrected γ_{dir} +jet measurement at RHIC energy.

And a comparison between γ_{dir} +jet and $h(\pi^0)$ +jet.

Two important tools developed in STAR

$\gamma_{\rm dir}$ +hadron and π^0 +hadron correlation

h[±]+jet

STAR: PLB 760 (2016) 689

• $\gamma_{\rm dir}/\pi^0$: trigger and discrimination

STAR BEMC and TPC detectors

STAR:PRC 96, 024905 (2017)

- Handel over uncorrelated background jet
- Final recoil jet correction (Unfolding)

Event statistics and γ_{dir} purity

- Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- Integrated luminosity of 13 nb⁻¹ in the year 2014

- γ_{rich} : Mixture of decay and direct photons
- Purity of direct photons varies between 65% and 89% for $9 \le E_T^{\text{trig}} \le 20 \text{ GeV}$
- High-purity criteria for π^0 selection limits the statistics
 - Similar procedure as in the previous STAR γ_{dir} +hadron correlation analysis [PLB 760 (2016) 689-696]

Semi-inclusive π^0/γ +jet

Recoil jets from triggered events

- With high- E_T trigger: $E_T^{trig} > 9 \text{ GeV}$
 - High- Q^2 process
- (Charged) Jet reconstruction:
 - Charged hadron constituents: $p_T^{const} < 15 \text{ GeV/c}$
 - Same constituent p_T cut also applied at the truth level
 - Algorithm: anti-k_T [Fastjet]
 - Recoil jet region: $[\pi \pi/4, \pi + \pi/4]$
 - Jet radius = 0.2, $|\eta_{jet}| < 1-R$

- Event-mixing technique
 - Uncorrelated jet background
 - Based on h+jet analysis [STAR: PRC **96**, 024905 (2017)]
 - Using same analysis conditions as applied in Same Event (SE)

Full analysis chain

- Discrimination between $\pi^0/\gamma_{\rm rich}$ -triggered events
 - Using Transverse Shower Profile method
- Recoil jets from high-tower-triggered events (SE)
 - Estimation of reconstructed jet p_T and background energy density (ρ)

$$p_{\mathrm{T,jet}}^{\mathrm{reco,ch}} = p_{\mathrm{T,jet}}^{\mathrm{raw,ch}} -
ho \cdot A$$
 $ho = \mathrm{median} \left\{ rac{p_{\mathrm{T,jet}}^{\mathrm{raw,i}}}{A_{\mathrm{jet}}^{\mathrm{i}}}
ight.$

$$\rho = \text{median} \left\{ \frac{p_{\text{T,jet}}^{\text{raw,i}}}{A_{\text{jet}}^{\text{i}}} \right\}$$

- Subtraction of uncorrelated jet background in recoil region
 - Using mixed-event subtraction method
- Correction for detector and heavy-ion background fluctuation effects
 - Using unfolding technique [RooUnfold]
- Conversion from γ_{rich} +jet to γ_{dir} +jet
 - Statistical subtraction based on previously determined purity
- Major sources of systematic uncertainty
 - Unfolding [Prior, methods e.g, SVD and Bayesian, iterations], Mixed-event normalization region, Track-reconstruction effects, γ_{dir} background subtraction [contributes only to γ_{dir}]

π^0 -triggered charged recoil jets in p+p collisions

- $p+p \sqrt{s_{NN}} = 200 \text{ GeV/c}$
- π^0 triggers with 9 < E_T^{trig} < 11 GeV, fully unfolded charged jets
 - zero background energy density(ρ)
- π^0 -triggered charged-jet spectrum consistent with PYTHIA8.

 γ_{dir} +jet and π^0 +jet : Higher E_T^{trig} analysis is underway (Derek Anderson, Ph.D student, TAMU)

Uncorrelated jet background: π^0 +jet

SE: Same Events from triggered events, ME: Mixed Events from MB dataset

- Similar background density distribution for SE and ME
- Recoil charged jet p_T shows π^0 -trigger E_T^{trig} dependence for 9-11 and 11-15 GeV
- Recoil charged jets dominate (above ~10 GeV/c) over uncorrelated jet background from mixed events

π^0 -triggered charged jets in Au+Au collisions

- π^0 -triggered charged recoil jets
 - Fully unfolded spectrum
- A clear difference between recoiljet spectra for different trigger-E_T:
 9 < E_T^{trig} < 11 GeV vs.
 11 < E_T^{trig} < 15 GeV
- Clear suppression with respect to PYTHIA8
- Higher E_T^{trig} (>15 GeV) and $p_{T,\text{jet}}^{\text{ch}}$ (> 20 GeV/c) in progress

γ_{dir}-triggered charged jets in Au+Au collisions

- Indication of systematic difference between recoil-jet spectra for different trigger- E_T : $9 < E_T^{trig} < 11$ GeV vs. $11 < E_T^{trig} < 15$ GeV
 - Downward arrow represents upper limit in yield at:

$$p_{T,jet}^{ch} = 11 \text{ GeV/c for } 9 < E_T^{trig} < 11 \text{ GeV,}$$

 $p_{T,jet}^{ch} = 15 \text{ GeV/c for } 11 < E_T^{trig} < 15 \text{ GeV.}$

 Clear suppression with respect to PYTHIA8

Fully unfolded recoil charged jet p_T

Recoil jet yield suppression: γ_{dir} +jet vs. π^0 +jet $9 < E_T^{trig} < 11 \text{ GeV}$

- I_{AA} PYTHIA is the ratio of per triggered recoil jet yield in central Au+Au collisions to PYTHIA
- Semi-inclusive γ_{dir} and π^0 -triggered charged-jet measurements
- Clear suppression for both trigger types with respect to PYTHIA8
- Similar level of suppression in γ_{dir} +jet and π^0 +jet, within uncertainties
 - γ_{dir} +jet runs out of kinematic reach

Comparison of h^{\pm} +jet to π^0 +jet

Au+Au 200 GeV

STAR: PRC **96**, 024905 (2017)

 h^{\pm} +jet: 9 < p_{T}^{trig} < 30 GeV/c

This analysis: $9 < E_T^{trig} < 11 \text{ GeV}$

Systematic (lighter band) and statistical (darker band) uncertainties

- Same level of suppression above $p_{T,iet}^{ch} > 9 \text{ GeV/c}$
 - h^{\pm} +jet is I_{CP} , whereas π^0 +jet is I_{AA}° PYTHIA

Recoil-jet yield suppression at different trigger E_T

$$\pi^0$$
 +jet

• No clear π^0 -trigger E_T dependence between $9 < E_T^{\text{trig}} < 11$ GeV vs. $11 < E_T^{\text{trig}} < 15$ GeV, within uncertainties, for jet radius 0.2

Recoil jet yield suppression: γ_{dir} +jet vs. π^0 +jet

What about at higher trigger E_T ? $11 < E_T^{trig} < 15 \text{ GeV}$

Systematic (lighter band) and statistical (darker band) uncertainties

 Almost same level of suppression in both cases, within uncertainties Ongoing work related to this analysis in STAR...

 π^0 +jet (γ_{dir} +jet) $\Delta \varphi$ angular correlation

Single scattering in a brick of QGP

Angle distribution
$$P(\theta) \equiv \int_{p_{\min}} dp F(p, \theta)$$

QCD Molière Scattering: A rare large angle scattering

F. D'Eramo, K. Rajagopal, Y. Yin arXiv:1808 03250 Y. Yin: HP2018 talk , JETSCAPE talk

In hot-dense QCD

- Firstly do we see this effect?
- Single vs. Multiple scattering domain?
- Parton momentum range?
- QCD medium response?

(An incident gluon with initial energy $p_i = 100T$.)

Rutherford Scattering like, gg->gg

In heavy-ion collisions

At small angle → Gaussian Shape
At large angle → Rutherford Scattering

- Scattering of a recoil-jet off quasi-particles in the QGP
 - Intra-jet broadening $(\Delta \varphi)$
- Intriguing to study $\Delta \phi$ correlations for different recoil jet radii and jet p_T in heavy-ion collisions

p+p PYTHIA expectation: π^0 +jet

Jet p_T vs. $\Delta \varphi$ correlation function

 $\Delta \varphi$ distributions at different jet p_T bins

No significant yield at large angular deviation.

Analysis is underway in Au+Au collision for different jet radii and jet p_T.

Heavy-Ion projection

STAR heavy-ion projection for this measurement Au+Au 200 GeV year 2014 + year 2016: ~25 nb⁻¹ Integrated Lumininosity

Summary

- First γ_{dir} +jet and π^0 +jet measurements in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV at RHIC
- p+p collisions at 200 GeV: π^0 -triggered recoil-jet yield consistent in data and PYTHIA8
- Central Au+Au at 200 GeV:
 - A strong suppression of γ_{dir} +jet and π^0 +jet
 - Suppression of recoil-jet yield consistent in both cases, for $9 < E_T^{trig} < 15 \text{ GeV}$

Outlook

Ongoing work in the direction of γ_{dir} +jet and π^0 +jet analysis in STAR :

- $E_T^{trig} > 15 \text{ GeV}$; larger $p_{T,iet} > 20 \text{ GeV/c}$; $R_{iet} = 0.5$
- π^0 +jet (γ_{dir} +jet) $\Delta \varphi$ angular correlation

JETSCAPE Theory calculations...

Backup

Recoil jet yield suppression: pp vs. PYTHIA π^0 +jet: 9 < E_T^{trig} < 11 GeV

Systematic (lighter band) and statistical (darker band) uncertainties

- I_{AA} is the ratio of per triggered recoil jet yield in central Au+Au to p+p collisions
- Comparison between π^0 -triggered charged jet I_{AA}^{PYTHIA} and $I_{AA}^{p+p \ data}$
- Consistent within uncertainties
- PYTHIA8 provides good representation of p+p data