

Hard Scatterings and Stochastic Reformulation of Parton Energy Loss

Tianyu Dai ¹, Steffen A. Bass ¹, Jean-Francois Paquet ¹, Derek Teaney ²

¹Duke University ²Stony Brook University

This work is supported by NSF grant ACI-1550225 and DOE grant DE-FG02-05ER41367.

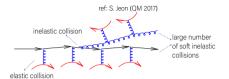
Weakly-Coupled Effective Kinetic Approach

- Perturbative parton-medium interaction
- HTL resummed diagrams
- Dynamics of quasiparticles are described by transport equations
- Energy gain and loss are naturally included

Leading-order realizations (e.g. MARTINI):

$$(\partial_t + \mathbf{v} \cdot \nabla_{\mathbf{x}}) f^a(\mathbf{p}, \mathbf{x}, t) = -\mathcal{C}_a^{2\leftrightarrow 2}[f] - \mathcal{C}_a^{1\leftrightarrow 2}[f]$$

Energy Loss Reformulation



Interactions with the medium:

- Large number of soft interactions
- Rare hard scatterings

Parton energy loss reformulated as hard interactions + diffusion process¹

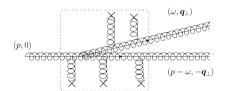
Benefits of Reformulated Transport Model

- Systematically factorized soft and hard parton-plasma interactions
- Efficient and flexible stochastic description of soft interactions
- Simplified next-to-leading order calculation

¹J. Ghiglieri, G. Moore, D. Teaney, JHEP03 (2016) 095

Hard Interactions - Large- ω Inelastic Interactions

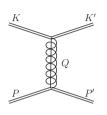
Multiple soft interactions with the plasma induce the radiation of a parton of energy ω .



Large- ω interactions

- $\circ \omega > \mu_{\omega}, \ \mu_{\omega} \lesssim T$
- Described with emission rates (obtained from AMY integral equations)
- Leading order calculation

Hard Interactions - Large- q_{\perp} Elastic Interactions



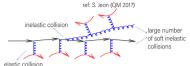
The transverse momentum transfer in elastic interaction is denoted as q_{\perp} .

Large- q_{\perp} interactions

- $\circ~q_{\perp}>\mu_{m{q}_{\perp}},~T\gg\mu_{m{q}_{\perp}}\gg gT$
- Calculated using leading order pQCD matrix elements
- \circ Vacuum matrix elements: plasma effect only significant at small q_{\perp}
- \circ Keep zero-th order term of T/p

Identity Preserving Soft Interactions - Diffusion

Number and identity preserving soft collisions are described stochastically with drag and diffusion.



$$\mathcal{C}^{diff}[f] = -rac{\partial}{\partial oldsymbol{p}^i} \left[\eta_D(oldsymbol{p}) oldsymbol{p}^i f(oldsymbol{p})
ight] - rac{1}{2} rac{\partial^2}{\partial oldsymbol{p}^i \partial oldsymbol{p}^j} \left[\left(\hat{oldsymbol{p}}^i \hat{oldsymbol{p}}^j \hat{oldsymbol{q}}_L(oldsymbol{p}) + rac{1}{2} \left(\delta^{ij} - \hat{oldsymbol{p}}^i \hat{oldsymbol{p}}^j
ight) \hat{oldsymbol{q}}(oldsymbol{p})
ight]$$

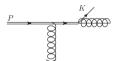
- Both elastic and inelastic soft interactions included
- Treated with Langevin model
- \circ Coupling constant order: $\hat{q},~\hat{q}_L^{elas}\sim \mathcal{O}(g^2),~\hat{q}_L^{inel}\sim \mathcal{O}(g^4)$
- \circ T/p order: \hat{q} , \hat{q}_I^{elas} , $\hat{q}_I^{inel} \sim \mathcal{O}(1)$, $\eta_D \sim \mathcal{O}(T/p)$

Identity Non-preserving Soft Interactions - Conversion

Conversion processes: change identity by conversion rate

Inelastic conversion processes

 $q \leftrightarrow gq$, $g \leftrightarrow q\bar{q}$ Conversion rate $\sim \mathcal{O}(g^4)$ Suppressed by T/p



Elastic conversion processes

Soft fermion exchange with the medium Conversion rate $\sim \mathcal{O}(g^2)$ Suppressed by T/p

Summary of the Treatments to Different Processes

reformulated interactions		identity preserving	identity non-preserving
soft interactions	small- q_{\perp} elastic	diffusion processes	conversion rate
	small- ω inelastic		
hard interactions	large- q_{\perp} elastic	vacuum matrix elements	
	large- ω inelastic	AMY integral equations	

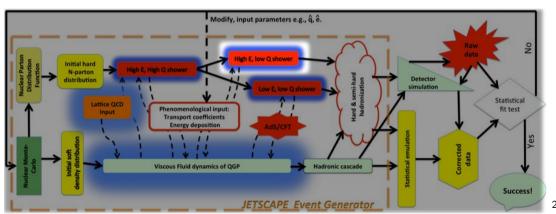
$$\mathcal{C}^{2\leftrightarrow 2} + \mathcal{C}^{1\leftrightarrow 2} = \mathcal{C}^{\textit{large}-\textit{q}_{\perp}}(\mu_{\textit{q}_{\perp}}) + \mathcal{C}^{\textit{large}-\omega}(\mu_{\omega}) + \mathcal{C}^{\textit{diff}}_{\textit{a}}(\mu_{\textit{q}_{\perp}},\mu_{\omega}) + \mathcal{C}^{\textit{conv}}_{\textit{a}}(\mu_{\textit{q}_{\perp}},\mu_{\omega})$$

If the division of the energy loss model is valid, energy loss should be **independent** on the cutoffs (in a reasonable range).

Practical Implementation

Reformulated energy loss model is **added as a separate external module** in a modified version of the public JETSCAPE code.



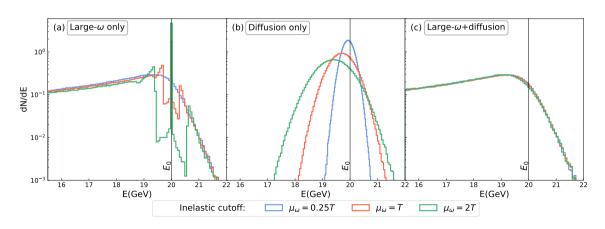


²JETSCAPE Collaboration

2

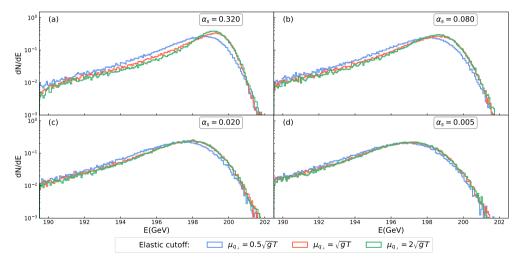
Inelastic Cutoff Independence - Inelastic Interactions Only

20 GeV gluon, $\alpha_s=$ 0.3, T = 300 MeV, infinite medium, au= 1fm/c

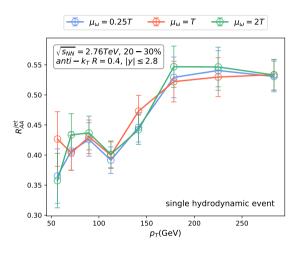


Elastic Cutoff Independence - Elastic Interactions Only

200 GeV gluon, T = 300 MeV, infinite medium, $\alpha_s^2 \tau = 0.3^2 {\rm fm/c}$



Cutoff Independence of Observables - R_{AA}



Nuclear modification factor³:

$$R_{AA}^{jet} = rac{rac{d^2N_{jet}}{dp_T dy}\mid_{AA}}{\langle N_{bin}
angle} rac{rac{d^2N_{jet}}{dp_T dy}\mid_{p_B}}{\langle p_T dy}$$

- Both elastic and inelastic interactions are included
- **Realistic** hydrodynamic event is used, $\alpha_s = 0.3$
- Different cutoff results are consistent within the statistical errorbars

³Assumes jets are produced at the center of the medium.

Conclusion and Outlook

Energy loss model is reformulated as hard collisions+diffusion.

- A systematic factorization in the weakly-coupled limit
- This factorization still holds in phenomenological regime
- The reformulated model is expected to be efficient and flexible.

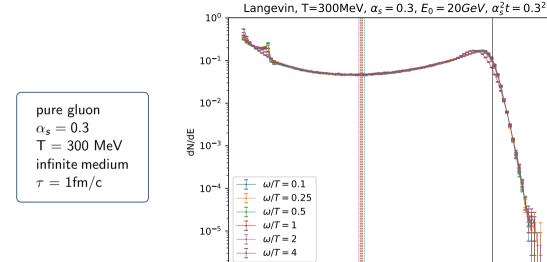
Future Plan

- Data driven constraints can be applied on drag and diffusion coefficients.
- The reformulated approach can be extended to the next-to-leading order.

Back Up - Drag and Diffusion Coefficients

$$egin{aligned} \hat{q} &= rac{g^2 C_R T m_D^2}{4\pi} \ln(1 + (rac{\mu_{m{q}_\perp}}{m_D})^2) \ \hat{q}_L^{elas} &= rac{g^2 C_R T M_\infty^2}{4\pi} \ln(1 + (rac{\mu_{m{q}_\perp}}{M_\infty})^2) \ \hat{q}_L^{inel} &= rac{(2 - \ln 2) g^4 C_R C_A T^2 \mu_\omega}{4\pi^3} \ \eta_D(p) &= rac{\hat{q}_L}{2T_P} + rac{1}{2p^2} (\hat{q} - 2\hat{q}_L) \end{aligned}$$

Back Up - Inelastic Cutoff Independence - Inelastic Interactions Only



10

15

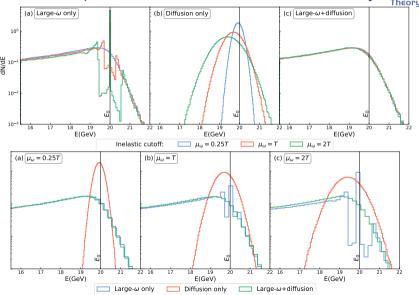
E(GeV)

25

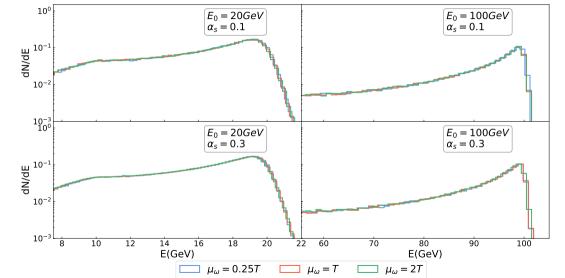
20

Back Up - Inelastic Cutoff Independence - Inelastic Interactions Only

20 GeV gluon $lpha_s=0.3$ T =300 MeV infinite medium au=1fm/c

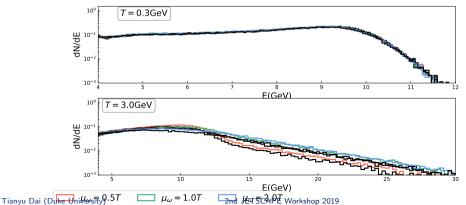


Back Up - Inelastic Cutoff Independence - Inelastic Interactions Only

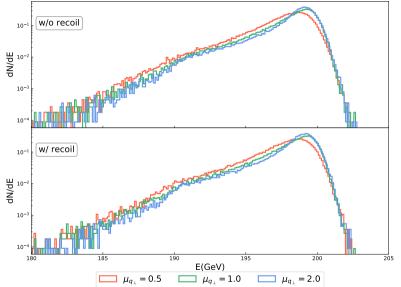


Back Up - Effects of Inelastic Conversion Processes - Inelastic Interactions Only

- Gluon, initial energy $E_0 = 10 \, GeV$, infinite medium, $\tau = 1 \, fm/c$
- \circ T/p: small in the upper plot and large in the lower plot
- Black curves: w/ inelstic conversion
- Colorful curves: w/o ineastic conversion

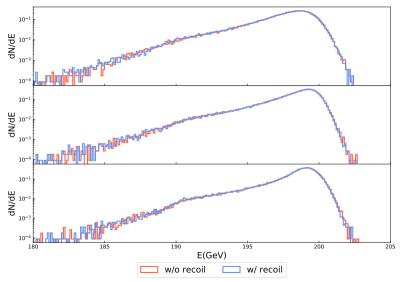


Back Up - Effects of Recoil Particles - Elastic Interactions Only



 $200~{
m GeV}$ gluon $lpha_s=0.3$ T $=300~{
m MeV}$ infinite medium $au=1{
m fm/c}$

Back Up - Effects of Recoil Particles - Elastic Interactions Only



 $200~{
m GeV}$ gluon $lpha_s=0.3~{
m T}=300~{
m MeV}$ infinite medium $au=1{
m fm/c}$

Back Up - Test with Realistic Hydrodynamic Medium

Realistic hydrodynamic event is used, $\alpha_s = 0.3$.

