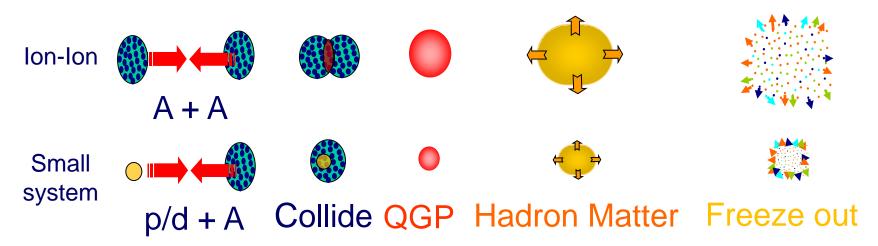
In-Medium Charmonium Production in Proton/Deuteron-Nucleus Collisions (Small System)

Xiaojian Du, Ralf Rapp

Cyclotron Institute
Department of Physics and Astronomy
Texas A&M University

2019.01.13

JETSCAPE Winter School and Workshop 2019



Outline

- Introduction
- Quarkonium Transport Approach
 - Rate Equation
 - Success of the Approach in AA Collisions
- p/dA Collisions with Data: R_{pA} and v₂
 - Nuclear Modification Factor R_{pA}
 - Elliptic Flow v₂
- Summary

X. Du, R. Rapp, arXiv: 1808.10014

Why p/d-A Collisions? Why Quarkonium?

Questions in p/d-A collisions:

- Medium Effects (in such small system)?
- Anisotropies (different from A+A collisions)?

Heavy Quarkonium, J/ ψ , ψ (2S), Υ (1S), Υ (2S),as a probe:

- 1. Survive in QGP (Ebinding>Tc), 2. Large masses (potential picture works),
- 3. Various species (bound/melt at different parts of potential), ...
- \rightarrow Ideal for probing strong force / $Q\bar{Q}$ potential in medium

Transport Approach

Kinetic Rate Equation

$$\frac{\mathrm{d}N_{\Psi}(\tau)}{\mathrm{d}\tau} = -\Gamma_{\Psi}(T(\tau))\left[N_{\Psi}(\tau) - N_{\Psi}^{\mathrm{eq}}(T(\tau))\right]$$

Transport Coefficients

primordial

regeneration

- Reaction Rates

 $\Gamma_{\Psi}(T(au))$ NLO Quasi-Free

- **Equilibrium Limits**

 $N_{\Psi}^{\rm eq}(T(\tau)) \Longrightarrow {\rm From\ Heavy\ quark} \\ N_{\Psi}^{\rm eq} = V_{\rm FB} \gamma_c^2 d_{\Psi} \int \frac{d^3p}{(2\pi)^3} f_{\Psi}^{\rm eq}(E_p;T)$

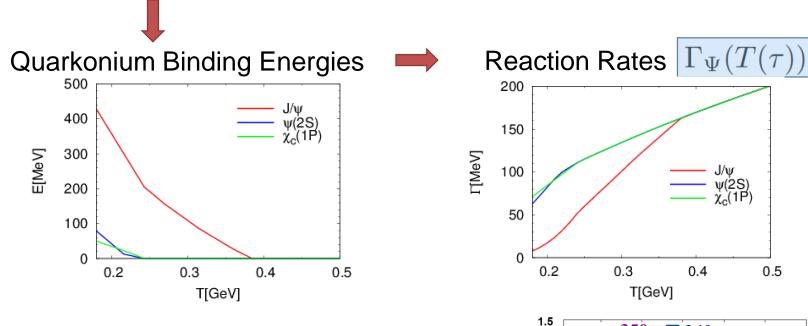
Key Parameters

• Coupling α_s

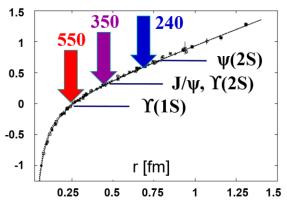
- **Affects Reaction Rates**
 - Fixed from Previous Calculations compared with data

- Thermal Relaxation Time
- Modifies Equilibrium Limit

Extracted from Heavy Quark Diffusion Simulations


Key Inputs

- In-Medium $Q\bar{Q}$ Potential/Binding Energy
- Heavy Quark/-onium pp Cross Section -> fugacity factor γ_c
- Initial State Effects (nPDF)
- Fireball Evolution

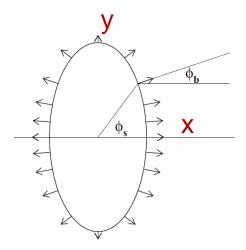


Binding Energy and Reaction Rates

T-Matrix with U Potential

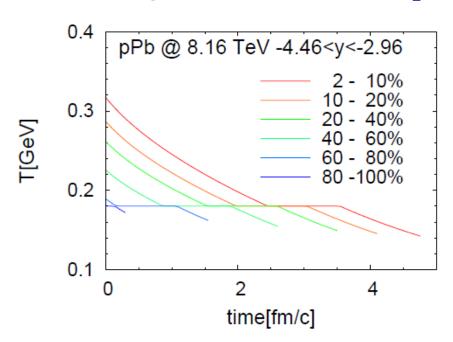
- Hierarchy:
 - \rightarrow Different Melting temperatures for J/ ψ , ψ (2S), Sequential Suppression ... Sequential Regeneration ...
- **Probing In-Medium Potential**

0.5


Elliptic Fireball Evolution

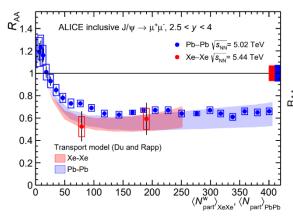
1. Need temperature evolution to solve the rate equation (medium effects)

Entropy conserved: $S_{\text{tot}} = s(T)V_{\text{FB}}(\tau)$ Temperature $T(\tau)$


2. Provide elliptic geometry of background medium (anisotropies)

Elliptic medium expansion: $V_{\rm FB} = (z_0 + v_z \tau) \pi R_x(\tau) R_y(\tau)$

Key Fireball Parameters:


→ Guided from light hadron spectra and v₂

Temperature Evolution

Success of Transport Approach in AA

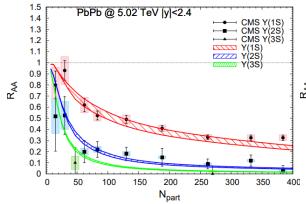
Charmonium

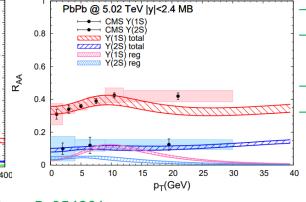
ALICE, PLB785 (2018) 419

1.2 PbPb √S_{NN}= 5.02TeV 0-20% 2.5<y<4.0 ALICE J/Ψ J/Ψ total J/Ψ reg 0.4 0.2 0 0 2 4 6 8 10 p_T[GeV]

See also: ALI-PREL-126572

Simultaneous description of ground and excited states:

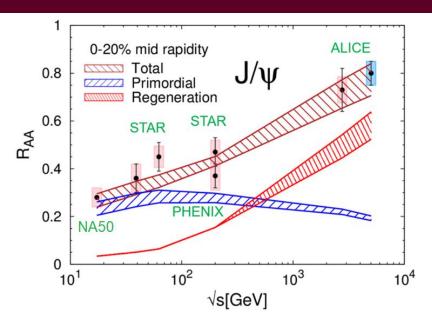

→Sequential suppression

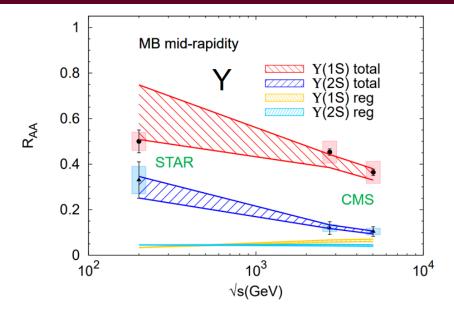

Has predictive power

Momentum spectra:

- → Demonstrate regeneration
- → Degree of heavy quark thermalization

Bottomonium


X. Du, M. He, R. Rapp, PRC96 (2017), no.5, 054901


Charm/Bottom-onium difference:

Charmonium:

- → Large regeneration
- → Close to thermal Bottomonium:
- → Small regeneration
- → Far from thermal

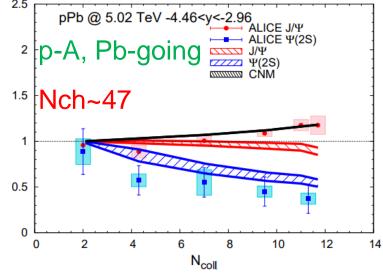
Success of Transport Approach in AA

R. Rapp, X. Du, NPA967 (2017) 216

J/ψ Excitation Function:

→ Further demonstration of regeneration

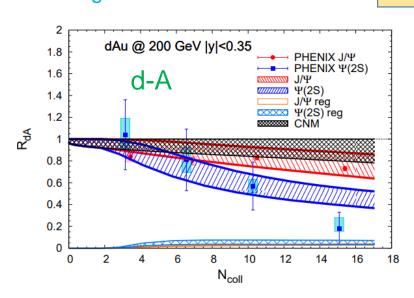
J/ψ and Y(2S): similar binding energies BUT different excitation functions

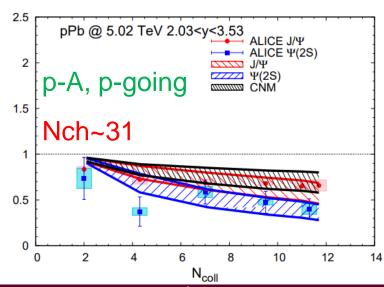

→ Due to Large regeneration for J/ψ

Centrality Dependent R_{dA}/R_{pA} at RHIC/LHC

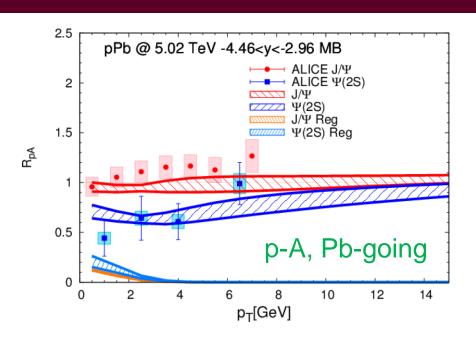
Nuclear modification factor

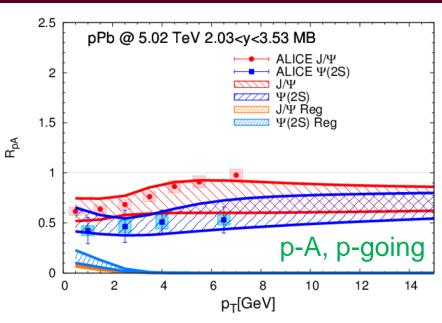
$$R_{pA} = \frac{N_{pA}}{N_{coll}N_{pp}}$$


- J/Ψ very little suppressed
- Ψ(2S) more suppressed



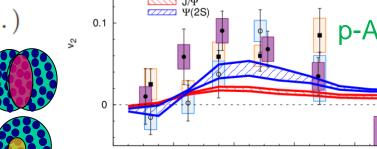
Medium effect


 R_{pA}



Pb-going larger J/Ψ, Ψ(2S) gap than p-going

p_T Dependent R_{pA} at the LHC

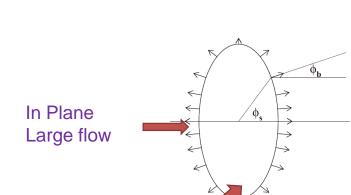

- Small regeneration contribution:
 - Verified by moderate p_T dependence
- → Thermalized and regenerated charmonium accumulates at low-p_T

Elliptic Flow (v₂) at the LHC

Elliptic flow (v_2) :

$$\frac{\mathrm{d}^2 N}{\mathrm{d}^2 p_T} = \frac{1}{2\pi} \frac{\mathrm{d}N(p_T)}{p_T \mathrm{d}p_T} (1 + 2 v_2(p_T) \cos(2\phi) + \dots)$$

- Anisotropy in A-A: non-central collision
- Anisotropy in p-A: fluctuation

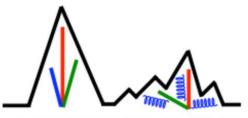


- v₂ in regeneration: flow effect
- v₂ compare to experimental data: Puzzle?

Data suggests large $J/\psi v_2$ but small J/ψ suppression

- Out Plane
 - Small flow

Large v₂ not from hot medium effect alone, from initial state effect?


p_T[GeV]

pPb @ 8.16 TeV mid-rapidity high-multiplicity

ALICE J/Ψ -4.46<y<-2.96 ALICE J/Ψ 2.03<y<3.53

Summary

- There is hot medium effect in pA collisions
 - \rightarrow J/ ψ and ψ (2S) R_{pA} "gap" (ψ (2S) R_{pA} < J/ ψ R_{pA})
 - → R_{pA} "gap" larger at Pb-going, smaller at p-going
- J/ψ regeneration is small in pA collisions
 - \rightarrow moderate J/ ψ R_{pA}(p_T)
- Initial state effect might be important for a simultaneous description of R_{pA} and v₂ in pA collisions
 - \rightarrow small J/ ψ suppression but large J/ ψ v₂

Thank you!

JET5☐ CHPE Winter School and Workshop 2019