

Heavy flavor measurements in p+p, d+Au, and Au+Au collisions at PHENIX

Kazuya Nagashima (Hiroshima Univ. / RIKEN)

✓ Introduction of Heavy Flavor Probe

✓ Previous Heavy Flavor Measurement

- Strong suppression in Au+Au
- ► Large CNM in d+Au
- Quark mass dependence?

- Large v₂ in Au+Au
 v₂ of HF→e in d+Au?
- Quark mass dependence?

✓ Previous Heavy Flavor Measurement

- Strong suppression in Au+Au
- ► Large CNM in d+Au
- Quark mass dependence?
- ► Large v₂ in Au+Au
- ► v_2 of HF→e in d+Au?
- Quark mass dependence?

✓ Heavy Flavor Measurement at PHENIX

Mid-rapidity

electrons at Central arm (with RICH and EMCal) $\varphi = \pi$, $|\eta| = 0.35$

Forward-rapidity

muons at Muon arm absorber: 7.2 X_{int} $\varphi = 2\pi$, 1.2 < $|\eta|$ < 2.2

Collision systems

p+p, p+Al, p+Au, d+Au, ³He+Au, AuAu, CuAu

Collision energies 20 ~ 200 ~ 510 GeV/c

✓ Silicon Vertex Detector at PHENIX

K. Nagashima - UCLA 2019 - Jan. 28, 2019

PH^{*}ENIX

Heavy Flavor Results in Small System (p+p)

→ baseline and production mechanism

K. Nagashima - UCLA 2019 - Jan. 28, 2019

✓ Single electron analysis in p+p

- Displaced vertex analysis at mid-rapidity
 - provides charm/bottom separation
- Unfolding problem on DCA template fit...

✓ <u>c/b separation with Bayesian inference</u>

K. Nagashima - UCLA 2019 - Jan. 28, 2019

Invariant Yield of $c \rightarrow e$ and $b \rightarrow e$ in p+p

- Unfold x-section of parent c,b hadron
 - refold simultaneous invariant yield and DCA_T distribution
- Precision baseline measurement for Au+Au collisions

✓ <u>Di-muon mass spectrums in p+p</u>

- high mass spectrum provides high S/B for $c\overline{c}$, $b\overline{b}$
 - $b\overline{b}$ dominates in like sign pairs
- Extraction of x-section of cc and bb with cocktail

✓ **Production Mechanism of** $c\bar{c}$ and $b\bar{b}$

$c\bar{c}$ production:

- Flavor excitation dominates
- Wider distribution than bb
 - NLO process dominates

$\mathbf{b}\mathbf{\bar{b}}$ production:

Pair creation dominates

Heavy Flavor Results in Small System (p,d+Au)

→ CNM effect and Flow

K. Nagashima - UCLA 2019 - Jan. 28, 2019

✓ Nuclear Modification of bb in p+Au

- Extraction of $b\overline{b}$ x-section from dimuon mass dist.
- R_{pA} shows no modification of $b\overline{b}$
 - high-multiplicity event?

✓ Single muon measurement in d+Au

- Single muons are measured at both Au-direction and d-direction.
- 0-20% high-multiplicity events are used for v₂^{HF} analysis.
- Main background sources:
 + hadron decay µ
 + punch thorough hadrons
 + J/ψ decay µ

►
$$v_2^{HF}$$
 is calculated by
 $v_2^{HF} = \frac{1}{F_{HF}} (v_2^{\text{incl.}} - (1 - F_{\text{HF}}) \times v_2^{\text{bg}})$

✓ Heavy Flavor Anisotropic Flow in d+Au

Measured non-zero $v_2^{c+b \rightarrow \mu}$ in small collision system

- heavy flavor flows in small collision system?
- ► similar order of magnitude, $v_2^{c+b \rightarrow \mu} \sim v_2^h$
 - \rightarrow key to understand flow in small system

✓ Heavy Flavor Anisotropic Flow in d+Au

Measured non-zero $v_2^{c+b \rightarrow \mu}$ in small collision system

- heavy flavor flows in small collision system?
- ► similar order of magnitude, $v_2^{c+b \rightarrow \mu} \sim v_2^h$
 - \rightarrow key to understand flow in small system

Heavy Flavor Results in Large System (Au+Au)

\rightarrow HF dynamics in QGP

K. Nagashima - UCLA 2019 - Jan. 28, 2019

✓ Invariant Yield of c, b→e in Au+Au

- Displaced vertex analysis at mid-rapidity
- Simultaneous fit to DCA_T distribution and invariant yield

✓ Invariant Yield of c, b→e in Au+Au

- Displaced vertex analysis at mid-rapidity
- Simultaneous fit to DCA_T distribution and invariant yield \rightarrow Extraction of $v_2^{c \rightarrow e}$ and $v_2^{b \rightarrow e}$ with DCA distributions

300 < |DCA| < 1000µm

>> Solve simultaneous equations!

✓ Anisotropic Flow of c, b→e in Au+Au

- Extraction of $v_2^{c \rightarrow e}$ and $v_2^{b \rightarrow e}$ with DCA
- Large v_2 of $c \rightarrow e$, $0 < v_2^{c \rightarrow e}$
 - c-quark is strongly coupled in QGP
- ► Likely non-zero v_2 of b→e?, 0 < (?) $v_2^{b \to e}$ < (?) $v_2^{c \to e}$
 - will be improved with higher statistics data

Quark Mass Dependent Dynamics in QGP

PHENIX has measured R_{AA} and v_2 of c, b $\rightarrow e$

- quark mass dependent suppression and flow?
- \rightarrow will be improved with high stat. data and new baseline

✓ <u>Summary</u>

- ► PHENIX has measured heavy flavors in small and large collision systems at √s_{NN} = 200 GeV
- Heavy flavor measurements in p+p collisions
 - obtained new baseline measurement for Au+Au
 - understood production mechanism from pair angle dist.
- Heavy flavor measurements in p+ and d+Au collisions
 - R_{pA} of $b\overline{b}$ shows no modification in p+Au
 - found non-zero v_2 of c+b $\rightarrow\mu$ in 0-20% d+Au
- Heavy flavor measurements in Au+Au collisions
 - measured R_{AA} and v_2 of separated $c{\rightarrow}e$ and $b{\rightarrow}e$
 - \rightarrow Quark mass dependence ?
 - will be improved with high stat. data and new baseline

Baryon Enhancement

Charm baryon enhancement is similar order of magnitude as Strangeness baryon enhancement

Testing Possible Baryon Enhancement

Follow P. Sorensen and X. Dong (*Phys Rev C 74, 024902 (2006)*)
Λ/Ks ratio measured

in STAR 20-40% Au+Au at 200 G and STAR in p+p at 200 GeV (arXiv:nucl-ex/0601042)

- Fit both data
- Fix asymptotic value to 0.3 in both Au +Au and p+p
- Apply enhanced the ratio of Λ_c/D and Λ_b/B to the decay matrice

Testing Possible Baryon Enhancement

Default decay matrix is obtained from PYTHIA model.

Decay matrix is modified - include baryon enhancement

Filled marker

- use default decay matrix

Open marker

- use modified decay matrix

Baryon enhancement effect is covered by current uncertainty

✓ Comparison of bottom anisotropic flow

- ATLAS and CMS reported positive b-quark v₂
- PHENIX measure low p_T b-quark v₂
 - sensitive region of flow in QGP
- ► b-quark v₂ indicates non-zero positive value
 - \rightarrow b-quark slightly flows and loses energy in QGP?

✓ Heavy flavor measurement in Au+Au

- Recode high statistics (Run14) AuAu data ~ 17 B events.
- PHENIX VTX allow precise measurement of c+b \rightarrow e.
 - > provides smaller photonic BG and higher RP resolution
- Measurement of inclusive HF v_2 is significantly improved.

- Bayes' theorem $P(\theta|x) \propto P(x|\theta)\pi(\theta)$
- Simultaneous fit to dN/dp_T and $DCA_T(p_T)$

K. Nagashima - UCLA 2019 - Jan. 28, 2019

- Bayes' theorem $P(\theta|x) \propto P(x|\theta)\pi(\theta)$
- Simultaneous fit to dN/dp_T and $DCA_T(p_T)$

- Bayes' theorem $P(\theta|x) \propto P(x|\theta)\pi(\theta)$
- Simultaneous fit to dN/dp_T and $DCA_T(p_T)$

- Bayes' theorem $P(\theta|x) \propto P(x|\theta)\pi(\theta)$
- Simultaneous fit to dN/dp_T and $DCA_T(p_T)$
- employ Markov Chain Monte Carlo (MCMC) for sampling

K. Nagashima - UCLA 2019 - Jan. 28, 2019

✓ Extraction of $c \rightarrow e$ and $b \rightarrow e$ with DCA

✓ Extraction of c→e and b→e with DCA

Comparison to FONLL

Invariant yields are compared to FONLL calculations

FONLL calculations are in reasonable agreement with data

Data is higher than FONLL by a factor of two at low $\ensuremath{p_{\text{T}}}$

- total cross section

