Dijet mass modification in heavy ion collisions

Jared Reiten UCLA Based on: arXiv:1810.10007 In collaboration with Z-B. Kang, I. Vitev, and B. Yoon

2019 Santa Fe Jets and Heavy Flavor Workshop at UCLA January 28-30, 2019

Outline

- Motivation
- Theoretical foundations
- Dijet mass modification predictions
- Summary


```
b-jets vs. light quark jets
```


- Single b-jets do not shed light on heavy quark energy loss
- Fractional contributions of subprocesses and R_{AA} show single b-jets behave more like light quarks in QCD medium
- Gluon splitting to b-bbar contribution dominates, thus not a good observable for b-quark energy loss

Flavor origins of b-dijets

- b-dijet production dominated by b+b channel across entire pT range
- Most accurately reflects the energy loss of b-quarks

Why dijets?

- Flavor origins make dijets particularly well-suited to probe the heavy flavor dynamics in the QGP
- b quarks are expected to suffer the least amount of medium-induced radiative energy loss: $\Delta E_{\rm rad}(g) > \Delta E_{\rm rad}(q) > \Delta E_{\rm rad}(c) > \Delta E_{\rm rad}(b)$
- This motivates our study of b-tagged dijets

p+p baseline to A+A cross section

- p+p baseline simulated in Pythia 8 w/ FastJet and anti-kT algorithm
- Production cross section for n-jet events in the presence of the medium factorizes in the following way:

$$d\sigma_{n-\text{jet}}^{\text{quenched}}(\epsilon_1,\ldots,\epsilon_n) = P_1(\epsilon_1) \otimes \cdots \otimes P_n(\epsilon_n)$$
$$\otimes |J_1(\epsilon_1)| \cdots |J_n(\epsilon_n)| \, d\sigma_{n-\text{jet}}^{pp}(\epsilon_1,\ldots,\epsilon_n)$$

- Each $P_i(\epsilon_i)$ is the probability density for the parent parton to redistribute a fraction ϵ_i of its energy through medium-induced soft gluon bremsstrahlung
- Each $J_i(\epsilon_i)$ is a phase space Jacobian taking this energy loss into account
- It is this factorization that allows us to take:

$$d\sigma^{pp}_{\text{dijet}} \longrightarrow d\sigma^{AA}_{\text{dijet}}$$

Jet energy loss in a nuclear medium

 Medium-modification of reconstructed jets captured by out-of-cone energy loss fraction:

$$f_{q,g}^{\text{loss}}(R; \text{rad} + \text{coll}) = 1 - \left(\int_0^R dr \int_{\omega_{\text{coll}}}^E d\omega \, \frac{dN_{q,g}^g(\omega, r)}{d\omega dr} \right) \left/ \left(\int_0^{R_{\text{max}}} dr \int_0^E d\omega \, \frac{dN_{q,g}^g(\omega, r)}{d\omega dr} \right) \right$$

 Initial high energy jet is prepared to obtain final jet that is observed – this defines the phase space Jacobian

Dijet mass

Dijet mass is given by the standard formula:

$$m_{12}^2 = (p_1 + p_2)^2$$

This can be expressed in terms of P_T after a few lines of algebra:

$$m_{12}^2 = m_1^2 + m_2^2 + 2 \left[m_{1T} m_{2T} \cosh(\Delta \eta) - p_{1T} p_{2T} \cos(\Delta \phi) \right]$$

where $\Delta \eta = \eta_1 - \eta_2$, $\Delta \phi = \phi_1 - \phi_2$ and $m_T = \sqrt{m^2 + p_T^2}$

- In the high P_T limit: $p_T \gg m \implies m_T \approx p_T$
- This gives us dijet mass in a form that is amenable to quenching

$$m_{12}^2 \approx m_1^2 + m_2^2 + 2p_{1T}p_{2T} \left[\cosh(\Delta \eta) - \cos(\Delta \phi)\right]$$

Previous LHC measurements of dijet mass

- Differential cross section vs. invariant mass of inclusive dijets measured by CMS (left) and b-tagged dijets measured by ATLAS (right)
- Simulations agree reasonably well with the experimental data

$$m_{12}^2 = (p_1 + p_2)^2$$

Comparison of dijet mass expressions

Nuclear modification factor for dijet mass

Previous factorization gives us cross section for dijet production in A+A:

$$\frac{1}{\langle N_{\rm bin} \rangle} \frac{d\sigma^{AA}}{dp_{T1}dp_{T2}} = \sum_{q,g} \int_0^1 d\epsilon_1 \ P_{1\,q,g}(\epsilon_1) \int_0^1 d\epsilon_2 \ P_{2\,q,g}(\epsilon_2)$$
$$\times J_{1\,q,g}(\epsilon_1, R_1) J_{2\,q,g}(\epsilon_2, R_2) \frac{d\sigma_{q,g}^{pp}(p'_{T1}, p'_{T2})}{dp'_{T1}dp'_{T2}}$$

Dijet mass cross section in A+A is then obtained via:

$$\frac{d\sigma^{AA}}{dm_{12}} = \int dp_{1T} \, dp_{2T} \, \frac{d\sigma^{AA}}{dp_{1T} dp_{2T}} \\ \times \delta \left(m_{12} - \sqrt{\langle m_1^2 \rangle_{pp} + \langle m_2^2 \rangle_{pp} + 2p_{1T} p_{2T} \langle \cosh(\Delta \eta) - \cos(\Delta \phi) \rangle_{pp}} \right)$$

This then leads naturally to a new observable for heavy ion collisions

$$R_{AA}(m_{12}) = \frac{1}{\langle N_{\rm bin} \rangle} \frac{d\sigma^{AA}/dm_{12}}{d\sigma^{pp}/dm_{12}}$$

For medium modification, we must consider initial jet with increased P_T:

$$p_T' = J \cdot p_T \sim p_T + \Delta$$

- We can get a feel for the sensitivities of dijet observables by substituting this shifted P_T into their proton-proton definitions
- Traditional dijet observables include the dijet asymmetry A_J and the dijet imbalance z_J , both of which contain *ratios* P_T as opposed to *products*

$$A_J^{pp} = \frac{p_T^L - p_T^S}{p_T^L + p_T^S} \qquad \qquad z_J^{pp} =$$

Dijet asymmetry

Dijet imbalance

 $\frac{p_T^S}{p_T^L}$

$$m_{pp}^2 = m_L^2 + m_S^2 + 2p_T^L p_T^S [\cosh(\Delta \eta) - \cos(\Delta \phi)]$$
 Dijet mass

The effects of medium-modification are *suppressed* with *ratios*

$$A_J^{AA} \approx A_J^{pp} \left\{ 1 - \frac{\Delta_L + \Delta_S}{p_T^L + p_T^S} \right\} + \frac{\Delta_L - \Delta_S}{p_T^L + p_T^S} + \dots$$

$$z_J^{AA} \approx z_J^{pp} \left\{ 1 + \frac{\Delta_S}{p_T^S} - \frac{\Delta_L}{p_T^L} + \dots \right\}$$

And they are *enhanced* with *products*

$$m_{AA}^2 \approx m_{pp}^2 + \{p_T^L \Delta_S + p_T^S \Delta_L\} [\cosh(\Delta \eta) - \cos(\Delta \phi)] + \dots$$

The effects of medium-modification are *suppressed* with *ratios*

$$\begin{split} A_J^{AA} &\approx A_J^{pp} \bigg\{ 1 - \underbrace{\left(\begin{array}{c} \Delta_L + \Delta_S \\ p_T^L + p_T^S \end{array} \right)}_{p_T^L + p_T^S} \bigg\} + \underbrace{\left(\begin{array}{c} \Delta_L - \Delta_S \\ p_T^L + p_T^S \end{array} \right)}_{p_T^L + p_T^S} + \dots \end{split} \\ suppression \\ z_J^{AA} &\approx z_J^{pp} \bigg\{ 1 + \underbrace{\left(\begin{array}{c} \Delta_S \\ p_T^S \end{array} \right)}_{p_T^S} + \underbrace{\left(\begin{array}{c} \Delta_L \\ p_T^L \end{array} \right)}_{p_T^L} + \dots \bigg\} \\ enhancement \\ \end{array} \\ \end{split}$$
And they are enhanced with products
$$\begin{split} m_{AA}^2 &\approx m_{pp}^2 + \underbrace{\left(\begin{array}{c} p_L \\ p_T^L \end{array} \right)}_{p_T^S} + \underbrace{\left(\begin{array}{c} p_T \\ p_T^S \end{array} \right)}_{p_T^S}$$

The effects of medium-modification are *suppressed* with *ratios*

Dijet asymmetry at 2.76 TeV

Dijet imbalace at 2.76 TeV

Dijet mass modification: CMS

 At lowest dijet mass we observe a nearly order-of-magnitude suppression in the production of inclusive dijets as compared to b-tagged dijets

Dijet mass modification: sPHENIX

 sPHENIX expected to see dramatic suppression of inclusive dijets relative to btagged across a majority of its kinematic range!

Relative magnitudes of mass modifications

- Alternatively, both experiments should expect to observe an abundance of b-tagged dijets upon analysis of dijet mass spectra
- sPHENIX is particularly well-suited to observe this dramatic effect

Summary

- We have evaluated the production of b-tagged and inclusive dijets for both CMS (Pb+Pb @ 5.02 TeV) and sPHENIX (Au+Au @ 200 GeV)
- We have proposed a new observable that reveals dramatic differences in the energy loss mechanisms of light and heavy flavor jets
- Dijet mass modification is a promising ingredient to understanding the inmedium dynamics of b-quarks
- The future sPHENIX experiment is particularly well-suited to unveil this novel effect

Thank you!

Backup Slides

Double differential cross sections: CMS

- Here we display the cross section in a more "symmetric manner," i.e. we do not distinguish between "leading" and "subleading" jets
- This best illustrates the "ridge" along the diagonal, i.e. the kinematic preference for the production of back-to-back dijet pairs

Nuclear modification factors: CMS

- Here, P_{1T} denotes the transverse momentum of the trigger/leading jet while P_{2T} denotes the recoil/subleading jet
- We observe the largest suppression along the main diagonal

Double differential cross sections: sPHENIX

 While kinematic range available for RHIC is far more limited than at of the LHC, we again observe the "ridge" along the diagonal, signaling proclivity for dijets to emerge back-to-back

Nuclear modification factors: sPHENIX

- Again, P_{1T} denotes the transverse momentum of the trigger/leading jet while P_{2T} denotes the recoil/subleading jet
- sPHENIX kinematics show an even stronger suppression along the main diagonal – revealing an amplification of jet-quenching effects relative to CMS 27