Jet Physics in Heavy Ion Collisions: Where are we? Where are we going?

UCLA 2019 Santa Fe Jets and Heavy Flavor Workshop 28-30 January 2019, UCLA, USA

Many thanks to Yang-Ting Chien, Yacine Mehtar-Tani for the discussions

Weak Coupling vs. Strong Coupling Limit

Yen-Jie Lee

Medium Response

We also don't know **how much** the medium response (recoil) plays a role in the description of the jet quenching observables and how to describe it correctly

Charged Particle and Jet R_{AA}

Impression: with tuning, models with different underlying physics could fit the data (both strong and weak coupling calculations)

Heavy Flavor Meson R_{AA}

- Both weak and strong coupling based models describe the charged hadron, charm and beauty meson R_{AA} data
- Within pQCD world, models with very different level of complexity describe the data
- No significant difference between beauty and inclusive (di-)jet results (not shown, need better accuracy)

Photon-Jet Momentum Balance

CMS vs. Smeared Theory

arXiv:1711.09738 Accepted by PLB

Resolution Unfolded ATLAS Data vs. Theory

- Different conclusions between CMS and ATLAS at low x_{iv}
- Example: HYBRID (AdS/CFT drag) model describes CMS data almost perfectly; inconsistent with ATLAS preliminary results at lowest X_{iv} ~ 0.5
- Note the difference in the photon p_T and jet p_T selection between CMS and ATLAS

Dijet Asymmetry in PbPb at 2.76 TeV

$$x_J = p_{T2} / p_{T1}$$

- First unfolded dijet p_⊤ ratio
- Narrow peak at low X₁ (~0.5) visible after jet resolution correction.
 - → Small fluctuation of the sub-leading jet energy loss?

anti- $k_{+}R = 0.4$ ets

PLB 774 (2017) 379

Peak goes away rapidly as one increase leading jet p_T cut

Jet R_{AA} vs. R

Jet R_{AA} vs. R

9

Spectra-based Observables

- Both strong and weak coupling models describe the charged particle and jet R_{AA} data
- Accumulation of very low p_T jets in ATLAS unfolded data: ATLAS dijet $X_J \sim 0.5$ peak in unfolded results: no model could describe it currently. (Also shown as enhancement in ATLAS photon-jet $X_{Jv} \sim 0.5$) Words from CMS and ALICE?

Possible future direction:

- Raise our standard of "data-model" agreement:
 p-value and global fit on multiple dataset
- Treat these observables as baseline data for model parameter extraction and predict other jet substructure (fluctuation) observables
- Comprehensive measurements on the R dependence of jet R_{AA} , $X_{j\gamma}$ and h-jet I_{AA} up to large R (with LHC experiments, STAR and sPHENIX)

QGP Rutherford Exp: back scattering

• No significant modification in h-jet and y-jet Dijet Angular Correlation at the LHC

hadron

Possible future direction:

 Need next level of accuracy and resolution at small ΔΦ and high statistics at large ΔΦ at LHC

 More promising at RHIC energy where the correlation is less affected by initial state radiation (STAR and sPHENIX)

Dijet Angular Correlation at RHIC

11

Flavor Dependence of Parton Energy Loss

Do gluons lose more energy than the quarks?

If yes: Gluon jet to quark jet ratio will decrease (Gluon jets are more suppressed)

Charged Jet p_TD (Dispersion) and Jet Girth

ALICE Simulation

$$p_{\mathrm{T}}D = \frac{\sqrt{\sum_{i} p_{\mathrm{T,i}}^{2}}}{\sum_{i} p_{\mathrm{T,i}}}$$

$$g = \sum_{i \in \text{jet}} \frac{p_{\text{T}}^i}{p_{\text{T}}^{\text{jet}}} |r_i|$$

ALICE Data

Charged jets in PbPb are more Quark-like! (Gluon jets suppressed)

Jet Longitudinal Structure

- Enhancement at low p_T (low Z) and depletion at intermediate Z
- Enhancement at large z (high p_T particles in jet): smaller gluon/quark ratio in PbPb
- High Z region: Weak or no dependence on the jet p_T

See discussions in Frank Ma, thesis (2013) arXiv:1504.05169 Martin Spousta, Brian Cole

If switch to γ-tagged jet (mainly quarks), will this enhancement go away?

Yen-Jie Lee

Jet Longitudinal Structure

High p_T particle (High Z)

If switch to γ-tagged jet (mainly quarks), will this enhancement go away?
Seems to be the case from CMS data (caveat: jet p_T also changed)

Photon-Tagged Fragmentation Function

16

Photon-Tagged Jet and Inclusive Jet Shape

Photon-tagged (Quark Enriched)

Inclusive (Quark + Gluon)

CMS-HIN-18-006 arXiv:1809.08602

$$\rho(\Delta r) = \frac{1}{\delta r} \frac{1}{N_{\text{jets}}} \sum_{\text{jets}} \frac{\sum_{\text{tracks} \in (r_a, r_b)} p_{\text{T}}^{\text{trk}}}{\sum_{\text{tracks}} p_{\text{T}}^{\text{trk}}}$$

- Difference at small r due to the lower jet p_T in photon-tagged jet and larger quark jet fraction
- Photon tagged jet in PbPb are wider than pp ref
- Need to measure higher p_T photon-tagged jet

Beauty vs. Charm hadrons

- Mass effect observed in LHC data though various fully / partially reconstructed decay channels
- Indication of mass effect from STAR and PHENIX data at RHIC

Heavy Flavor vs. Light Flavor

 Expect significantly better accuracy with HL-LHC data and future sPHENIX data

Flavor Dependence of Jet Energy Loss

- Heavy quarks lose less energy than the light flavor:
 Established in LHC data though model comparisons
 - Quarkonia production and suppression similar to open charm: fragmentation process (not shown)
- Overall narrowing (hardening) of the inclusive 'jet core' in AA collision
- Larger gluon jet suppression than quark: collected hints from various jet substructure observables + ATLAS jet and charged particle R_{AA} measurements vs. η

Possible future direction:

- High precision photon-tagged jet shape and FF (LHC+sPHENIX)
- High precision HF-jet measurements down to low p_T (LHC+sPHENIX)
- Q vs. g: Employ unsupervised ML technique: jet topic separation
- A comprehensive HF program at HL-LHC experiments (ALICE upgrade) and at RHIC (sPHENIX)
- Underlying mechanism of HF energy loss: go beyond HF spectra and HF-soft correlation (v_N):
 - DDbar, Jet-D and γ-D correlation, HF jet FF and shape

Quenched Energy out of the Jet Cone

Do we see medium response?

Quenched Energy Flow at RHIC

Matched A_J

prconst > 0.2 GeV/c

Matched jets of different θ_{SJ} selections are balanced at RHIC

- STAR high tower triggered A_J: lost energy recovered within R=0.4
- On the other hand, STAR h-Jet and PHENIX γ-hadron correlations (not shown): the quenched energy goes to large angle

22

Excess in Jet-Hadron Correlation

23

Theoretical Interpretation of the Excess

Different explanations of the large angle enhancement in jet shape measurement

- SCET_G: Splitting function (large angle radiation)
- JEWEL & JETSCAPE: medium recoil parton
- CCNU: recoil parton + hydro dynamical evolution
- HYBRID: fully thermalized medium response
- McGill: medium response + shower

Theoretical Interpretation of the Excess

Different explanations of the large angle enhancement in jet shape measurement

- SCET_G: Splitting function (large angle radiation)
- JEWEL & JETSCAPE: medium recoil parton
- CCNU: recoil parton + hydro dynamical evolution
- **HYBRID**: fully thermalized medium response
- McGill: medium response + shower

How do we make progress?

centrality 0-10%

anti- k_T R=0.3

 $dd(u\nabla)d/du$

 p_T^{jet} >100GeV/c, p_T^{trk} >1GeV/c

(1) Look into the Excess

- One possibility is to look at the particle composition which carry the large angle radiation: (exciting opportunity for ALICE)
- An attempt to check the mass dependence with Jet-D correlation from CMS: Hint of longer distance between jet axis and D⁰ meson, relation to D⁰ v₂?

(2) To Measure the Depletion

Tan Luo, Xin-Nian Wang

Measure the **near-side associated yield** with photon-jet and Z-jet

(3) Focus on the Hardest Substructure

Does the magnitude of quenching depend on the structure of parton shower? One could **remove the soft radiation** (isolate the hard jet core)

"Ungroomed" Jet Mass

- $100 < P_{T, ch jet} < 120 \text{ GeV}$ 0.05 $M_{ch \; iet} \; (\text{GeV})$
- Cancelling effects from medium modifications of the shower and medium response

Many Exciting Developments

Groomed Jet Substructure with Soft Drop

• CMS: used two grooming settings with $\Delta R > 0.1$ cut

Groomed Jet Mass

$$(z_{cut}, \beta) = (0.1, 0.0)$$
 $\Delta R > 0.1$

"Flat Grooming"

 Enhancement of large mass when looking at a less aggressive grooming setting

- Results with a "more aggressive grooming
- Smaller or no significant modification of the "jet core"

Momentum Sharing of Subjets

arXiv:1708.09429 PRL 120 (2018) 142302 PRL Synopsis

 $p_{T,2}$

!

Quark and gluon Z_g distributions are very similar in pp Jets with **two hard subjets** (large Z_g) "**relatively**" more suppressed!

Interpretation:

- JEWEL: enhancement of low Z_g jets (due to medium recoil)
- SCET_G: modification due to medium induced splitting function
- HT & Coherent antenna BDMPS: Data prefer coherent energy loss Two hard subjets
- Measurement of ΔR spectra and groomed R_{AA} would help

 $Z_{\alpha} \sim 0.5$

Effect of ΔR selection on Z_q spectra

- No enhancement of low Z_g jets, different from JEWEL prediction Too high correlation between medium recoil and jet in JEWEL? (hints also seen in jet mass measurements)
- ΔR cut increase the suppression of large Z_g jets

Harry Andrews (QM2018)

Possible Direction: Hybrid Observable

Jet tagging with jet substructure: beyond flavor dependence
 Jet structure dependence of jet quenching

Jet Physics in Heavy Ion Collisions

Old Observables + New Excitement

35

Yen-Jie Lee

Fluctuation of Jet Quenching

- Sub-jet momentum sharing and groomed jet mass are modified in LHC data. Hint from STAR data (not shown)
- New Era: Observables with different grooming settings could provide stress tests on theoretical models

Open issue:

 Sizable effects from UE fluctuation on groomed Zg and mass measurements; difficulty in detector effect unfolding

Possible direction:

- Develop new algorithms with minimal sensitivity to soft background (for instance, use WTA axis)
- Design jet substructure observables which maximize or minimize the medium effect (also need to be measurable and calculable)
- Iterative feedback cycle: use the state-of-art generator which is tuned to describe the data for resolution unfolding (ex. JETSCAPE, JEWEL++, QPYTHIA++ ...)
- To extract medium properties from different variables

Jet Quenching in Small System

- Collective behavior is observed in small systems down to pp
- Not observed (yet) in high multiplicity e⁺e⁻
- Have we detected jet quenching in small system?

Jet Quenching in Small System

- No suppression observed in pPb collisions from those observables
- Also centrality / activity dependent results:
 Charged Particle Q_{pPb} from ALICE, R_{dAu} in PHOBOS and CMS dijet:
 need higher accuracy and better event classification
- Indication of suppression (2σ) in PHENIX di-hadron correlation function (shown in this workshop)

Jet Quenching in Small System

- Sizable v₂ signal at high p_T in identified hadrons!
- Effect of residual non-flow?
- Indication that CGC and/or Escape Mechanism effects in pPb?

Possible Future Direction:

- Crucial to understand the minimum requirement for jet quenching
- Search for additional final state effect in high multiplicity pPb
- Exp: How can we do better in centrality classification?
- Theory: what do we expect? How big is the modification in R_{AA},
 photon-jet asymmetry and jet substructure in 0.001% pPb collisions?

Other Ways to Very System Size

- Use smaller ions
- Charged Particle R_{AA}: Approximate scaling with N_{part}
- Future measurements in even smaller systems ilke OO, ArAr and KrKr at the LHC could be of interest
- Possibility to perform this survey with sPHENIX at RHIC?

6.6 fm

LHC Timeline and CMS Upgrade

				HL-LHC								
PbPb 2 nb ⁻¹				PbPb 7 nb ⁻¹					PbPb 7 nb ⁻¹			
Run 2		Long shutdown 2		Run 3		Long Shutdown 3		1 3	Run 4			
	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029

CMS Phase 2 Upgrade

- 2016: Major upgrade of L1 trigger
- 2017: 4-Layer Pixel Detector
- 2018 Performance:

CMS Phase 1 Upgrade

- pp L1 100kHz
- PbPb L1 30kHz (3x of 2015)
- DAQ: 6 GB/s
 - Up to 6.5 kHz MinBias events to tape (20x of 2015)

2024-26

- Tracker |n|<4
- Muon ID up to |η|<3
- High Granularity Calo 1.6<|η|<3.0
- MIP timing detector
 - 4D vertexing
 - Possible p/K/π PID
- pp L1: 750 kHz
- DAQ: 60 GB/s

41

LHC and sPHENIX timeline

LHC										HL-LHC			
PbPb 2 nb ⁻¹			PbPb 7 nb ⁻¹						PbPb 7 nb ⁻¹				
Run 2		Long shutdown 2		Run 3		Long Shutdown 3		1 3	Run 4				
	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	
CMS Phase 1 Upgrade				CMS	CMS Phase 2 Upgrade								
sPHENIX construction							taking can o+Au, Au+A	1 0	Second o	ampaign \u+Au			

sPHENIX Installation commissioning

RHIC

Year	Species	Energy [GeV]	Phys. Wks	Rec. Lum.	Samp. Lum.	Samp. Lum. All-Z
Year-1	Au+Au	200	16.0	$7~{ m nb^{-1}}$	$8.7 \; { m nb^{-1}}$	$34~\mathrm{nb^{-1}}$
Year-2	p+p	200	11.5	_	$48 \; { m pb}^{-1}$	$267 \; { m pb}^{-1}$
Year-2	p+Au	200	11.5	_	$0.33 \; \mathrm{pb^{-1}}$	$1.46~{ m pb^{-1}}$
Year-3	Au+Au	200	23.5	$14 \; { m nb}^{-1}$	$26~\mathrm{nb^{-1}}$	$88 \; { m nb}^{-1}$
Year-4	p+p	200	23.5	_	$149 \; { m pb}^{-1}$	$783 \; { m pb}^{-1}$
Year-5	Au+Au	200	23.5	$14 \; { m nb}^{-1}$	$48 \; { m nb}^{-1}$	$92 \; { m nb}^{-1}$

42

Summary

Final Goal: consistent QGP properties from soft and hard probes

Emerging Strongly Interacting Medium

 Snapshot of "thermalizing jets" taken by the recorded jet data in the form of modified jet shapes and fragmentation

Jet Quenching Mechanism

- Indication of larger gluon energy loss than quarks
- Narrowing of the inclusive jet core
- Broadening of the photon-tagged jet shape
- Jet energy loss depends on jet substructure "Parton shower shape dependence of jet quenching"

Indication of Medium Response Signal

Interpretation of the data: still model dependent

Small System and Peripheral Events

- Search for jet quenching effect in small system
- Significant bias in the peripheral AA data

Backup slides

ATLAS Jet Mass

Centrality Selection Bias

- Selection bias plays a very important role in peripheral events
- Models which interpreted peripheral data as cold nuclear effects are wrong

Incoherent superposition of PYTHIA events according to the # of multiparton interaction in HIJING

Amount of bias: Process dependent! (i.e, can not be resolved by using # of Z boson as scale factor)

Austin Baty (QM'18)

CMS Groomed Jet Splitting Function

CMS Groomed Jet Splitting Function

Z-Jet vs calculations

- Important to have correct pp baseline
- Reasonable agreement between data and theory curves from JEWEL, HYBRID and GLV

Charged Particle R_{AA} vs. Theoretical Models

- General trend described by pQCD based and Hybrid models
- A full description of the R_{AA} is still challenging for some models

Description of the D⁰ Meson Data

- At high D⁰ p_T: Trend captured by pQCD and AdS/CFT based models
- · Reasonable description of the data could be achieved
- Details doesn't work perfectly, especially the slope of the D⁰ R_{AA} vs. p_T

ALICE Charged Jet Mass

- Data sit between JEWEL recoil on and off
- HYBRID need medium recoil to describe the ALICE data

Groomed Jet Mass

 Enhancement of large mass when looking at a less aggressive grooming setting

- Results with a "more aggressive grooming"
- No significant modification of the "jet core"

Charged Particle R_{AA}

- Almost no suppression at very high p_T compared to **pp reference** (p_T ~400 GeV)
- Similar charged particle R_{AA} in PbPb at 5 TeV compared to 2.76 TeV

- General trend described by both **pQCD** and **Hybrid** models
- Description of the R_{AA} over the whole p_⊤ range is still challenging

Collimated jets vs. Large Opening Angle

Normalized by total number of jets

Unselected = Untagged (SD) + cut by ΔR cut

- Small or no modification of "collimated jets" (small ΔR between subjets)
- Larger ΔR cut ($\Delta R > 0.2$ large opening angle between subjets): Significant suppression at large Z_a

Harry Andrews (QM2018)

55

Recursive Splittings

 No enhancement in the number of splitting passing Soft Drop in PbPb compared to pp

Photon-Tagged Fragmentation Function

- Decrease the population of gluon jets:
 >70% of the tagged jets are quark jets
- Observation of modified jet fragmentation function in PbPb with respect to pp
 - No significant high z (or small $\xi=\ln(1/z)$) enhancement observed
 - CMS only measured down to $\xi > = 0.5$ (or z <= 0.7)
 - It would be good to have high p_T associated jet version of this analysis

Jet Transverse Structure

Jet shapes in pp and PbPb at 5.02 TeV

- Jet shapes and fragmentation functions in pp and PbPb collisions at 5 TeV
- Sensitive to the possible **medium response** to hard probes and **induced radiation**

Jet R_{AA} vs. Rapidity

- Larger |y|: steeper p_T spectra slope and higher quark fraction
- Flat R_{AA} vs rapidity: less jet suppression at larger |y|,
 i.e., quarks lose less energy than gluons.

Flavor Dependence of Parton Energy Loss

Do light quarks lose more energy than heavy quarks?

Dead-cone effect at low meson p_T, disappearance at high meson p_T

Do gluons lose more energy than the quarks?

If yes: Gluon jet to quark jet ratio will decrease (Gluon jets are more suppressed)

Flavor Dependence of Parton Energy Loss

PbPb 0-100%

27.4 pb⁻¹ (5.02 TeV pp) + 530 μ b⁻¹ (5.02 TeV PbPb)

- R_{AA} is meson flavor dependent at low p_T;
 disappearance of the effect at high p_T
- Consistent with the expectation from parton flavor dependent energy loss

- Prompt J/ ψ R_{AA} ~ Charged particle R_{AA} at high p_T: FF+parton energy loss in play
- Relevance of the fragmentation process for the interpretation of low pT J/ψ?

R_{AA} in peripheral events

From Dennis Perepelisa QM'17

With ALICE data analysis (also CMS generator studies) shown in QM'18 Models which interpreted these data as cold nuclear effects are wrong

Interpreting Single Jet Measurements in Pb+Pb Collisions at the LHC

Martin Spousta^a, Brian Cole^b

1504.05169

Total Charm Production Cross-section

Total Charm Production Cross Section

Charm H	Hadron	Cross Section dσ/dy (μb)				
	D^0	41 ± 1 ± 5				
	$D^{^{+}}$	18 ± 1 ± 3				
Au+Au 200 GeV (10-40%)	D_s^+	15 ± 1 ± 5				
(10-4070)	$\boldsymbol{\Lambda}_{c}^{+}$	78 ± 13 ± 28*				
	Total	152 ± 13 ± 29				
p+p 200 GeV	Total	130 ± 30 ± 26				

Total charm X-section follows $\sim N_{bin}$ scaling from p+p to Au+Au However, charm hadron fractions are different from p+p to Au+Au collisions

Heavy Quark Hadronization

Z-Jet in pp and PbPb at 5.02 TeV

66

Z_g vs. ΔR Phase Space

Ideal world, different phase space correspond to different physics

Z_{α} vs. ΔR Phase Space

- The reality may be much more complicated than that
- The excitement: One could construct different observables which are sensitive to different part of the phase space and provide stress test on models

 ΔR

Search for Quasi-Particles in the QGP

Search for Quasi-Particles in the QGP

QGP Rutherford Experiment

71

Groomed Jet Mass

From Yi Chen (MIT)

Moreover, groomed jet mass distributions in pp with CMS selection criteria are similar between quark and gluon jets (due to the ΔR cut)

Charged Particle and Jet R_{AA}

Impression: with tuning, models with different underlying physics could fit the data (both strong and weak coupling calculations)

Heavy Flavor Meson R_{AA}

- Both weak and strong coupling based models describe the charged hadron, charm and beauty meson R_{AA} data
- Within pQCD world, models with very different level of complexity describe the data
- No significant difference between beauty and inclusive (di-)jet results (not shown, need better accuracy)

